Infrared and Laser Engineering, Volume. 50, Issue 9, 20210445(2021)
Research progress on technologies and applications of geometric coordinate transformation of vortex beam (Invited)
[1] [1] Webb W T, Hanzo L. Modern Quadrature Amplitude Modulation: Principles Applications f Fixed Wireless Channels: One[M]. US: IEEE PressJohn Wiley, 1994.
[2] [2] Mukherjee B. Optical WDM wks[M]. Berlin: Springer Science & Business Media, 2006.
[3] [3] Hanzo L, Ng S X, Keller T, et al. Quadrature Amplitude Modulation[M]. Chichester, UK: Wiley, 2004.
[4] Rubinsztein-Dunlop H, Forbes A, Berry M V, et al. Roadmap on structured light[J]. Journal of Optics, 19, 013001(2016).
[5] Forbes A, Oliveira M, Dennis M R. Structured light[J]. Nature Photonics, 15, 253-262(2021).
[6] Beijersbergen M W, Allen L, Veen H E L O, et al. Astigmatic laser mode converters and transfer of orbital angular momentum[J]. Optics Communications, 96, 123-132(1993).
[7] Enk S J, Nienhuis G. Eigenfunction description of laser beams and orbital angular momentum of light[J]. Optics Communications, 94, 147-158(1992).
[8] Allen L, Beijersbergen M W, Spreeuw R, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 45, 8185(1992).
[9] Shen Y, Wang X, Xie Z, et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light: Science & Applications, 8, 90(2019).
[10] Willner A E, Huang H, Yan Y, et al. Optical communications using orbital angular momentum beams[J]. Advances in Optics and Photonics, 7, 66-106(2015).
[11] Geng J. Structured-light 3D surface imaging: a tutorial[J]. Advances in Optics and Photonics, 3, 128-160(2011).
[12] Mair A, Vaziri A, Weihs G, et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 412, 313-316(2001).
[13] Otte E, Nape I, Rosales-Guzmán C, et al. High-dimensional cryptography with spatial modes of light: tutorial[J]. Journal of the Optical Society of America B, 37, A309-A323(2020).
[14] Fang X, Ren H, Gu M. Orbital angular momentum holography for high-security encryption[J]. Nature Photonics, 14, 102-108(2020).
[15] Erhard M, Fickler R, Krenn M, et al. Twisted photons: new quantum perspectives in high dimensions[J]. Light: Science & Applications, 7, 17146(2018).
[16] Wang J. Advances in communications using optical vortices[J]. Photonics Research, 4, B14-B28(2016).
[17] [17] Bozinovic N, Yue Y, Ren Y, et al. bital angular momentum (OAM) based mode division multiplexing (MDM) over a Kmlength fiber [C]Optical Society of America, 2012: Th.3.C.6.
[18] Bozinovic N, Yue Y, Ren Y, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 340, 1545-1548(2013).
[19] Ndagano B, Nape I, Cox M A, et al. Creation and detection of vector vortex modes for classical and quantum communication[J]. Journal of Lightwave Technology, 36, 292-301(2018).
[20] Chen R, Zhou H, Moretti M, et al. Orbital angular momentum waves: generation, detection, and emerging applications[J]. IEEE Communications Surveys & Tutorials, 22, 840-868(2019).
[21] Qin F, Wan L, Li L, et al. A transmission metasurface for generating OAM beams[J]. IEEE Antennas and Wireless Propagation Letters, 17, 1793-1796(2018).
[22] [22] RosalesGuzmán C, Fbes A. How to Shape Light with Spatial Light Modulats[M]. US: SPIE Press, 2017.
[23] Shen Y, Meng Y, Fu X, et al. Wavelength-tunable Hermite–Gaussian modes and an orbital-angular-momentum-tunable vortex beam in a dual-off-axis pumped Yb: CALGO laser[J]. Optics Letters, 43, 291-294(2018).
[24] Song R, Gao C, Zhou H, et al. Resonantly pumped Er: YAG vector laser with selective polarization states at 1.6 µm[J]. Optics Letters, 45, 4626-4629(2020).
[25] Wang H, Fu S, Gao C. Tailoring a complex perfect optical vortex array with multiple selective degrees of freedom[J]. Optics Express, 29, 10811-10824(2021).
[26] Anhäuser A, Wunenburger R, Brasselet E. Acoustic rotational manipulation using orbital angular momentum transfer[J]. Physical Review Letters, 109, 034301(2012).
[27] Jiang X, Li Y, Liang B, et al. Convert acoustic resonances to orbital angular momentum[J]. Physical Review Letters, 117, 034301(2016).
[28] Li H, Ren G, Zhu B, et al. Guiding terahertz orbital angular momentum beams in multimode Kagome hollow-core fibers[J]. Optics Letters, 42, 179-182(2017).
[29] Verbeeck J, Tian H, Schattschneider P. Production and application of electron vortex beams[J]. Nature, 467, 301-304(2010).
[30] Liu C, Liu J, Niu L, et al. Terahertz circular Airy vortex beams[J]. Scientific Reports, 7, 1-8(2017).
[31] Mirhosseini M, Malik M, Shi Z, et al. Efficient separation of the orbital angular momentum eigenstates of light[J]. Nature Communications, 4, 1-6(2013).
[32] Leach J, Padgett M J, Barnett S M, et al. Measuring the orbital angular momentum of a single photon[J]. Physical Review Letters, 88, 257901(2002).
[33] Liu Z, Yan S, Liu H, et al. Superhigh-resolution recognition of optical vortex modes assisted by a deep-learning method[J]. Physical Review Letters, 123, 183902(2019).
[34] Hickmann J M, Fonseca E, Soares W C, et al. Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum[J]. Physical Review Letters, 105, 053904(2010).
[35] Mourka A, Baumgartl J, Shanor C, et al. Visualization of the birth of an optical vortex using diffraction from a triangular aperture[J]. Optics Express, 19, 5760-5771(2011).
[36] Fu S, Zhang S, Wang T, et al. Measurement of orbital angular momentum spectra of multiplexing optical vortices[J]. Optics Express, 24, 6240-6248(2016).
[37] Fu S, Zhai Y, Zhang J, et al. Universal orbital angular momentum spectrum analyzer for beams[J]. PhotoniX, 1, 1-12(2020).
[38] Liu Y, Sun S, Pu J, et al. Propagation of an optical vortex beam through a diamond-shaped aperture[J]. Optics & Laser Technology, 45, 473-479(2013).
[39] Ambuj A, Vyas R, Singh S. Diffraction of orbital angular momentum carrying optical beams by a circular aperture[J]. Optics Letters, 39, 5475-5478(2014).
[40] Tao H, Liu Y, Chen Z, et al. Measuring the topological charge of vortex beams by using an annular ellipse aperture[J]. Applied Physics B, 106, 927-932(2012).
[41] Qassim H, Miatto F M, Torres J P, et al. Limitations to the determination of a Laguerre–Gauss spectrum via projective, phase-flattening measurement[J]. Journal of the Optical Society of America B, 31, A20-A23(2014).
[42] Choudhary S, Sampson R, Miyamoto Y, et al. Measurement of the radial mode spectrum of photons through a phase-retrieval method[J]. Optics Letters, 43, 6101-6104(2018).
[43] Bouchard F, Valencia N H, Brandt F, et al. Measuring azimuthal and radial modes of photons[J]. Optics Express, 26, 31925-31941(2018).
[44] Wang J, Yang J, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature photonics, 6, 488-496(2012).
[45] [45] Zhou Y. Optical communication with structured photons propagating through dynamic, aberrating media[D]. Rochester: University of Rochester, 2021.
[46] Berkhout G C, Lavery M P, Courtial J, et al. Efficient sorting of orbital angular momentum states of light[J]. Physical Review Letters, 105, 153601(2010).
[47] Wen Y, Chremmos I, Chen Y, et al. Spiral transformation for high-resolution and efficient sorting of optical vortex modes[J]. Physical Review Letters, 120, 193904(2018).
[48] Hossack W J, Darling A M, Dahdouh A. Coordinate transformations with multiple computer-generated optical elements[J]. Journal of Modern Optics, 34, 1235-1250(1987).
[49] Ruffato G, Massari M, Parisi G, et al. Test of mode-division multiplexing and demultiplexing in free-space with diffractive transformation optics[J]. Optics Express, 25, 7859-7868(2017).
[50] Yang J, Liu Z, Gao S, et al. Two-dimension and high-resolution demultiplexing of coaxial multiple orbital angular momentum beams[J]. Optics Express, 27, 4338-4345(2019).
[51] Li C, Zhao S. Efficient separating orbital angular momentum mode with radial varying phase[J]. Photonics Research, 5, 267-270(2017).
[52] Ruffato G, Massari M, Romanato F. Compact sorting of optical vortices by means of diffractive transformation optics[J]. Optics Letters, 42, 551-554(2017).
[53] Ruffato G, Massari M, Girardi M, et al. Non-paraxial design and fabrication of a compact OAM sorter in the telecom infrared[J]. Optics Express, 27, 24123-24134(2019).
[54] Lightman S, Hurvitz G, Gvishi R, et al. Miniature wide-spectrum mode sorter for vortex beams produced by 3D laser printing[J]. Optica, 4, 605-610(2017).
[55] Wan C, Chen J, Zhan Q. Compact and high-resolution optical orbital angular momentum sorter[J]. APL Photonics, 2, 031302(2017).
[56] Lightman S, Gvishi R, Hurvitz G, et al. Shaping of light beams by 3D direct laser writing on facets of nonlinear crystals[J]. Optics Letters, 40, 4460-4463(2015).
[57] Yan Y, Xie G, Lavery M P, et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing[J]. Nature Communications, 5, 5876(2014).
[58] Lavery M P, Robertson D J, Berkhout G C, et al. Refractive elements for the measurement of the orbital angular momentum of a single photon[J]. Optics Express, 20, 2110-2115(2012).
[59] Ruffato G, Girardi M, Massari M, et al. A compact diffractive sorter for high-resolution demultiplexing of orbital angular momentum beams[J]. Scientific Reports, 8, 1-12(2018).
[60] [60] Wen Y, Chremmos I, Chen Y, et al. Highresolution compact vtex mode sters based on a spiral transfmation [C]2018 Conference on Lasers ElectroOptics (CLEO), IEEE, 2018: 12.
[61] [61] Huo Y, Yang G, Gu B. Realization of unitary transfm general linear transfmation by optical methods—(I)Possibility analysis [J]. Acta Physica Sinica, 1975, 24(6): 438447. (in Chinese)
[62] Fontaine N K, Ryf R, Chen H, et al. Laguerre-Gaussian mode sorter[J]. Nature Communications, 10, 1-7(2019).
[63] [63] He L, Lin Z, Wen Y, et al. An inverse design method combining particle swarm optimization wavefront matching method f multiplane light conversion [C]Optical Society of America, 2020: FM7D.5.
[64] [64] Lin Z, Wen Y, Chen Y, et al. Transmissive multiplane light conversion f demultiplexing bital angular momentum modes [C]Optical Society of America, 2020: SF1J. 5.
[65] [65] Bian Y, Li Y, Li W, et al. Modes multiplexing conversion based on multiplane light conversion [C]Optical Society of America, 2020: M4A.252.
[66] Zhao Q, Hao S, Wang Y, et al. Orbital angular momentum detection based on diffractive deep neural network[J]. Optics Communications, 443, 245-249(2019).
[67] Huang Z, Wang P, Liu J, et al. All-optical signal processing of vortex beams with diffractive deep neural networks[J]. Physical Review Applied, 15, 014037(2021).
[68] Khonina S N, Kotlyar V V, Skidanov R V, et al. Gauss–Laguerre modes with different indices in prescribed diffraction orders of a diffractive phase element[J]. Optics Communications, 175, 301-308(2000).
[69] Gibson G, Courtial J, Padgett M J, et al. Free-space information transfer using light beams carrying orbital angular momentum[J]. Optics Express, 12, 5448-5456(2004).
[70] Lavery M P, Berkhout G C, Courtial J, et al. Measurement of the light orbital angular momentum spectrum using an optical geometric transformation[J]. Journal of Optics, 13, 064006(2011).
[71] Malik M, Mirhosseini M, Lavery M P, et al. Direct measurement of a 27-dimensional orbital-angular-momentum state vector[J]. Nature Communications, 5, 4115(2014).
[72] Potoček V, Miatto F M, Mirhosseini M, et al. Quantum hilbert hotel[J]. Physical Review Letters, 115, 160505(2015).
[73] Ruffato G, Massari M, Romanato F. Multiplication and division of the orbital angular momentum of light with diffractive transformation optics[J]. Light: Science & Applications, 8, 1-13(2019).
[74] Takashima S, Kobayashi H, Iwashita K. Integer multiplier for the orbital angular momentum of light using a circular-sector transformation[J]. Physical Review A, 100, 063822(2019).
[75] Wen Y, Chremmos I, Chen Y, et al. Arbitrary multiplication and division of the orbital angular momentum of light[J]. Physical Review Letters, 124, 213901(2020).
[76] Zhou H, Dong J, Wang J, et al. Orbital angular momentum divider of light[J]. IEEE Photonics Journal, 9, 1-8(2017).
[77] Zhao Z, Ren Y, Xie G, et al. Invited Article: Division and multiplication of the state order for data-carrying orbital angular momentum beams[J]. APL Photonics, 1, 090802(2016).
[78] [78] Ruffato G, Romanato F. Algebra of light: multiplication division of bital angular momentum [C]2020 Italian Conference on Optics Photonics (ICOP), IEEE, 2020: 14.
[79] Wen Y, Chremmos I, Chen Y, et al. Compact and high-performance vortex mode sorter for multi-dimensional multiplexed fiber communication systems[J]. Optica, 7, 254-262(2020).
[80] Fickler R, Lapkiewicz R, Huber M, et al. Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information[J]. Nature Communications, 5, 5502(2014).
[81] Walsh G F. Pancharatnam-Berry optical element sorter of full angular momentum eigenstate[J]. Optics Express, 24, 6689-6704(2016).
[82] Ruffato G, Brasselet E, Massari M, et al. Electrically activated spin-controlled orbital angular momentum multiplexer[J]. Applied Physics Letters, 113, 011109(2018).
[83] [83] Fontaine N K, Ryf R, Chen H, et al. LaguerreGaussian mode sters of high spatial mode count [C]International Society f Optics Photonics, 2020: 1120319.
Get Citation
Copy Citation Text
Zhensong Wan, Chaoyang Wang, Qiang Liu, Xing Fu. Research progress on technologies and applications of geometric coordinate transformation of vortex beam (Invited)[J]. Infrared and Laser Engineering, 2021, 50(9): 20210445
Category: Special issue-Manipulation on optical vortex and its sensing application
Received: Jul. 2, 2021
Accepted: --
Published Online: Oct. 28, 2021
The Author Email: