Laser & Optoelectronics Progress, Volume. 61, Issue 24, 2428009(2024)

Segmentation of Remote Sensing by Fusing Grafting-Type Attention and Detail Perception

Yijie Zhang1,2, Xinlin Xie1,2、*, Jing Fan1,2, and Zeyun Duan1,2
Author Affiliations
  • 1School of Electronic and Information Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi , China
  • 2Shanxi Key Laboratory of Advanced Control and Equipment Intelligence, Taiyuan 030024, Shanxi , China
  • show less
    Figures & Tables(11)
    Framework diagram of superpixel segmentation of remote sensing by fusing grafting-type attention and detail perception
    Spatial detail module for edge guidance
    Structure of grafting-type attention mechanism
    Texture-aware loss structure diagram
    Performance comparison for different values of K
    Visualization results of different algorithms
    • Table 1. Performance comparison of different detailing modules

      View table

      Table 1. Performance comparison of different detailing modules

      Detail processing moduleFilterUEBRASA
      ×0.18140.80210.9455
      Filter0.17920.75920.9339
      FRH26×0.17570.80940.9436
      ESDP-×0.16730.85690.9479
      ESDP0.15860.87200.9549
    • Table 2. Performance comparison of different attention mechanisms

      View table

      Table 2. Performance comparison of different attention mechanisms

      Attention mechanismUEBRASA
      0.18240.72680.9320
      SE170.17640.79660.9435
      DANet210.17640.79900.9436
      FLA220.17030.81610.9447
      GTAM0.15860.87200.9549
    • Table 3. Comparison of performance using texture-aware function or not

      View table

      Table 3. Comparison of performance using texture-aware function or not

      Texture-aware lossUEBRASA
      ×0.17520.73690.9456
      0.15860.87200.9549
    • Table 4. Comparison of small target performance

      View table

      Table 4. Comparison of small target performance

      AlgorithmUEBRASA
      SLIC0.26530.60720.9299
      SCN0.20270.63780.9392
      RIM0.31890.71670.9061
      AINET0.19060.67720.9322
      RUN0.20860.69670.9474
      Proposed algorithm0.16700.79710.9533
    • Table 5. Performance comparison of different algorithms on the Potsdam dataset

      View table

      Table 5. Performance comparison of different algorithms on the Potsdam dataset

      AlgorithmUEBRASAMDE
      SLIC0.21980.72890.93473.9734
      SCN0.20190.82970.93973.6952
      RIM0.19040.77660.93633.2198
      AINET0.19320.83330.94883.7776
      RUN0.17460.86410.95593.4374
      Proposed algorithm0.15860.87390.95492.5989
    Tools

    Get Citation

    Copy Citation Text

    Yijie Zhang, Xinlin Xie, Jing Fan, Zeyun Duan. Segmentation of Remote Sensing by Fusing Grafting-Type Attention and Detail Perception[J]. Laser & Optoelectronics Progress, 2024, 61(24): 2428009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Feb. 5, 2024

    Accepted: Apr. 11, 2024

    Published Online: Dec. 17, 2024

    The Author Email: Xinlin Xie (xiexinlin@tyust.edu.cn)

    DOI:10.3788/LOP240674

    CSTR:32186.14.LOP240674

    Topics