Optics and Precision Engineering, Volume. 20, Issue 5, 963(2012)
Inversion of dynamic light scattering combining Tikhonov regularization with multi-grid technique
[1] [1] CHU B, LIU T.Characterization of nanoparticles by scat-tering techniques[J].J.Nanoparticle Res.2000,2,(1): 29-41.
[4] [4] KOPPEL D E.Analysis of macromolecular polydispersity in intensity correlation spectroscopy: The method of Cumulants [J].Chem Phys,1972,57(11): 4814-4820.
[5] [5] MCWHIRTER J G, PIKE E R. On the numerical inversion of the Laplace transform and similar Fredholm integral equations of the first kind[J].Phys A: Math Gen, 1978, 11 (9): 1729-1745.
[6] [6] PROVENCHER S W, CONTIN. A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations[J].Comput Phy Commun, 1982,27(3): 229-242.
[7] [7] DAHNEKE B E. Measurement of Suspended partieles by Quasi-Elastie Light Scattering[M]. New York: Wiley Interscience,1983.
[8] [8] MORRISON I D, GRABOWSKI E F. Improved techniques for particle size determination by quasi-elastic light scattering[J]. Langmuir, 1985, 1: 496-501.
[9] [9] SUN Y F, WALKER J G. Maximum likelihood data inversion for photon correlation spectroscopy[J]. Meas Sci Technol, 2008, 19(11): 115-302.
[10] [10] ZHU X J, SHEN J, LIU W, et al.. Nonnegative least-squares truncated singular value decomposition to particle size distribution inversion from dynamic light scattering data[J]. Applie Optics,2010, 49(36): 6591-6596.
[11] [11] HAN Q Y, SHEN J, SUN X M,et al.. A posterior choice strategies of the tikhonov regularization parameter in the inverse algorithm of the photon correlation spectroscopy particle sizing techniques[J]. Acta Photonica Sinica, 2009, 38(11): 2917-2926(in Chinese).
[12] [12] STUBEN K. A review of algebraic multigrid[J].Journal of Computational and Applied Mathematics, 2001, 128: 281-309.
[13] [13] BORNEMANN F, DEUFLHARD P. The cascadic multi-grid method for elliptic problems[J]. Numer Math, 1996, 42(9): 917-924.
[14] [14] BORNEMANN F, KRAUSE R. Classical and cascadic multigrid methodogicai comparison [C].Proceedings of the 9th International Conference on Domain Decomposition. New York: John Wiley and Sons,1998
[15] [15] BORNEMANN F, DEUFLHARD P. The cascadic multi-grid method[C]. The Eighth International Conference on Domain Decomposition Method for Partial Differential Equations. New York: Wiley and Sons,1997.
[16] [16] HANSEN P C. Regularization tools: A matlab package for analysis and solution of discrete ill-posed problems [J]. Numer. Algo, 2007, 46 : 189-194.
[17] [17] GOLUB G H, HEATH M T, WAHBA G. Generalized cross-validation as a method for choosing a good ridge parameter[J].Technometrics, 1979, 21: 215-223.
[18] [18] YU A B, STANDISH N. A study of particle size distribution [J]. Power Technol,1990,62(2): 101-118.
[19] [19] COLEMAN T F, LI Y. An interior trust region approach for nonlinear minimization subject to bounds[J]. SIAM Journal on Optimization,1996,6(2): 418-445.
[20] [20] WU J, LI M , YU T. Ill matrix and regularization method in surveying data processing[J]. Journal of Geodesy and Geodynamics, 2010,30 (4): 102-105.(in Chinese)
Get Citation
Copy Citation Text
Wang Ya-jing, Shen Jin, Zheng Gang, Liu Wei, Sun Xian-ming. Inversion of dynamic light scattering combining Tikhonov regularization with multi-grid technique[J]. Optics and Precision Engineering, 2012, 20(5): 963
Category:
Received: Nov. 14, 2011
Accepted: --
Published Online: Aug. 8, 2012
The Author Email: Wang Ya-jing (wangyjing0725@126.com)