Journal of Inorganic Materials, Volume. 40, Issue 5, 521(2025)
[1] ZHANG Y, XIA L Z, LI C Y et al. Enhanced 2.7 µm mid-infrared emission in Er3+/Ho3+ co-doped tellurite glass[J]. Optics and Laser Technology(2021).
[2] WANG C Z, TIAN Y, GAO X Y et al. Investigation of broadband mid-infrared emission and quantitative analysis of Dy-Er energy transfer in tellurite glasses under different excitations[J]. Optics Express(2017).
[3] FENG S H, LIU C Z, ZHU J et al. Realizing particle population inversion of 2.7 μm emission in heavy Er3+/Pr3+ co-doped low hydroxyl fluorotellurite glass for mid-infrared laser[J]. Ceramics International(2023).
[5] TOBBEN H. Room temperature CW fiber laser at 3.5 μm in Er3+-doped ZBLAN glass[J]. Electronics Letters(1992).
[6] AYDIN Y O, FORTIN V, VALLEE R et al. Towards power scaling of 2.8 μm fiber lasers[J]. Optics Letters(2018).
[8] EI-MALLAWANY R A H. Tellurite glasses handbook: physical properties and data[J]. Boca Raton: CRC press.
[9] TIAN Y, XU R R, HU L L et al. Broadband 2.84 μm luminescence properties and Judd-Ofelt analysis in Dy3+ doped ZrF4-BaF2- LaF3-AlF3-YF3 glass[J]. Journal of Luminescence(2012).
[10] GAO X Q, FANG G Y, WANG Y et al. Visible and mid-infrared spectral performances of Dy3+: CaF2 and Dy3+/Y3+: CaF2 crystals[J]. Journal of Alloys and Compounds(2021).
[12] ALVES R T. Raman and optical spectroscopy studies in Tm3+/Dy3+-codoped zinc tellurite glasses[J]. Journal of Luminescence(2021).
[13] NEDELCHEVA A B, IORDANOVA R, GANEV S et al. Glass formation and structural studies of glasses in the TeO2-ZnO- Bi2O3-Nb2O5 system[J]. Journal of Non-Crystalline Solids(2019).
[14] FARES H, JLASSI I, ELHOUICHET H et al. Investigations of thermal, structural and optical properties of tellurite glass with WO3 adding[J]. Journal of Non-Crystalline Solids(2014).
[15] KOROLEVA O N, SHTENBERG M V, IVANOVA T N. The structure of potassium germanate glasses as revealed by Raman and IR spectroscopy[J]. Journal of Non-Crystalline Solids(2019).
[17] CAI M Z, ZHOU B, TIAN Y et al. Broadband mid-infrared 2.8 μm emission in Ho3+/Yb3+-codoped germanate glasses[J]. Journal of Luminescence(2016).
[18] QI F W, ZHOU L F, TIAN Y et al. Low-hydroxy Dy3+/Nd3+ co-doped fluoride glass for broadband 2.9 µm luminescence properties[J]. Journal of Luminescence(2017).
[19] JUDD B R. Optical absorption intensities of rare-earth ions[J]. Physical Review(1962).
[20] BRIK M G, ISHII T, TKACHUK A M et al. Calculations of the transitions intensities in the optical spectra of Dy3+: LiYF4[J]. Journal of Alloys and Compounds(2004).
[21] GUO H T, LIU L, WANG Y Q et al. Host dependence of spectroscopic properties of Dy3+-doped and Dy3+, Tm3+-codped Ge-Ga-S-CdI2 chalcohalide glasses[J]. Optics Express(2009).
[22] SONG C L, ZHOU D C, XU P F et al. Enhanced 3 μm luminescence in Ho3+/Yb3+ co-doped bismuth-tellurite glass by controlled structure network topology[J]. Journal of Non-Crystalline Solids(2022).
[23] QI F W, HUANG F F, WANG T et al. Enhanced 3 μm luminescence properties based on effective energy transfer Yb3+: 2F5/2→Dy3+: 6H5/2 in fluoaluminate glass modified by TeO2[J]. Applied Optics(2017).
[24] SHEN L L, WANG N, DOU A J et al. Broadband -3 μm mid-infrared emission in Dy3+/Yb3+ co-doped germanate glasses[J]. Optical Materials(2018).
[25] ZHANG P X, XU M, ZHANG L H et al. Intense 2.89 μm emission from Dy3+/Yb3+-codoped PbF2 crystal by 970 nm laser diode pumping[J]. Optics Express(2015).
[27] CAI X Y, WANG Y, LI J F et al. Enhanced broadband 3 μm emission in Yb3+/Dy3+: YAlO3 crystal under 979 nm excitation[J]. Vacuum(2020).
[28] PAYNE S A, CHASE L L, SMITH L K et al. Infrared cross- section measurements for crystals doped with Er3+, Tm3+, and Ho3+[J]. IEEE Journal of Quantum Electronics(1992).
[29] MCCUMBER D E. Theory of phonon-terminated optical masers[J]. Physical Review(1964).
[30] HANG L Y, ZHANG J J, YU C L et al. A method for emission cross section determination of Tm3+ at 2.0 μm emission[J]. Journal of Applied Physics(2010).
[31] BOUDEIF Y M, YOUSEF E S, MARZOUK S Y et al. Investigation of luminescence parameters of novel glasses with composition TeO2-ZnO-NaF-MoO2-Er2O3 as laser material[J]. Journal of Non-Crystalline Solids(2018).
[32] MIYAKAWA T, DEXTER D L. Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids[J]. Physical Review B(1970).
[33] DEXTER D L. A theory of sensitized luminescence in solids[J]. The Journal of Chemical Physics(1953).
Get Citation
Copy Citation Text
Yuzhou PAN, Fajian HE, Lulu XU, Shixun DAI.
Category:
Received: Oct. 24, 2024
Accepted: --
Published Online: Sep. 2, 2025
The Author Email: Shixun DAI (daishixun@nbu.edu.cn)