Laser & Optoelectronics Progress, Volume. 58, Issue 2, 0210005(2021)
Adaptive One-Hand and Two-Hand Gesture Recognition Based on Double Classifiers
Fig. 3. One-hand and double-hand gesture recognition structure based on two classifiers
Fig. 6. Diagrams of gesture grouping prediction. (a) Gesture binary graphs; (b) centers of gravity of hand gestures; (c) gesture grouping prediction maps
Fig. 9. Samples of one-hand and double-hand gesture data sets. (a) One-hand gestures; (b) double-hand gestures
Fig. 10. Data expansion and complex background gesture samples. (a) Complex background gestures; (b) data expansion
Fig. 11. Convergence and error rate curves of CNN and AE-CNN. (a) Convergence curves of CNN, CNN+Dropout,and AE-CNN; (b) error rate curves of CNN and AE-CNN
Fig. 12. LBP features of hand gestures (0,2,5, and 9). (a) LBP feature of zero gesture; (b) LBP feature of two gesture; (c) LBP feature of five gesture; (d) LBP feature of nine gesture
Fig. 13. HOG features of partial gestures and HOG+PCA dimensionality reduction reconstruction maps
Fig. 14. Preprocessing graphs after adding different noise. (a) Normalization of salt and pepper noise; (b) binary map of salt and pepper noise; (c) binary map of Gaussian noise; (d) distribution of Gaussian noise density; (e) normalization of Gaussian noise
|
|
|
|
|
Get Citation
Copy Citation Text
Zheng Zhang, Yang Xu. Adaptive One-Hand and Two-Hand Gesture Recognition Based on Double Classifiers[J]. Laser & Optoelectronics Progress, 2021, 58(2): 0210005
Category: Image Processing
Received: Jun. 28, 2020
Accepted: Aug. 27, 2020
Published Online: Jan. 8, 2021
The Author Email: Yang Xu (xuy@gzu.edu.cn)