Optics and Precision Engineering, Volume. 32, Issue 14, 2256(2024)
Visual inspection of soldering defects on board surfaces against complex backgrounds
[1] JIANG W J, LI T F, ZHANG S L et al. PCB defects target detection combining multi-scale and attention mechanism[J]. Engineering Applications of Artificial Intelligence, 123, 106359(2023).
[2] ZHONG Z Y, MA Z C. A novel defect detection algorithm for flexible integrated circuit package substrates[J]. IEEE Transactions on Industrial Electronics, 69, 2117-2126(2022).
[3] [3] 刘玉淇, 吴一全. 基于机器视觉的太阳能电池片缺陷检测算法综述[J]. 光学 精密工程, 2024, 32(6): 868-900. doi: 10.37188/ope.20243206.0868LIUY Q, WUY Q. Review of defect detection algorithms for solar cells based on machine vision[J]. Opt. Precision Eng., 2024, 32(6): 868-900.(in Chinese). doi: 10.37188/ope.20243206.0868
[4] [4] 乔健, 陈能达, 伍雁雄, 等. 融合注意力机制的金属锅圆柱表面缺陷检测[J]. 光学 精密工程, 2023, 31(3): 404-416. doi: 10.37188/OPE.20233103.0404QIAOJ, CHENN D, WUY X, et al. Defect detection of cylindrical surface of metal pot combining attention mechanism[J]. Opt. Precision Eng., 2023, 31(3): 404-416.(in Chinese). doi: 10.37188/OPE.20233103.0404
[5] [5] 陈亚芳, 廖飞, 黄新宇, 等. 多尺度YOLOv5的太阳能电池缺陷检测[J]. 光学 精密工程, 2023, 31(12): 1804-1815. doi: 10.37188/OPE.20233112.1804CHENY F, LIAOF, HUANGX Y, et al. Multi-scale YOLOv5 for solar cell defect detection[J]. Opt. Precision Eng., 2023, 31(12): 1804-1815.(in Chinese). doi: 10.37188/OPE.20233112.1804
[6] [6] 夏衍, 罗晨, 周怡君, 等. 基于Swin Transformer轻量化的TFT-LCD面板缺陷分类算法[J]. 光学 精密工程, 2023, 31(22): 3357-3370. doi: 10.37188/OPE.20233122.3357XIAY, LUOC, ZHOUY J, et al. A lightweight deep learning model for TFT-LCD circuits defect classification based on swin transformer[J]. Opt. Precision Eng., 2023, 31(22): 3357-3370.(in Chinese). doi: 10.37188/OPE.20233122.3357
[7] DING R W, DAI L H, LI G P et al. TDD-net: a tiny defect detection network for printed circuit boards[J]. CAAI Transactions on Intelligence Technology, 4, 110-116(2019).
[8] XU R G, HAO R Y, HUANG B Q. Efficient surface defect detection using self-supervised learning strategy and segmentation network[J]. Advanced Engineering Informatics, 52, 101566(2022).
[9] ZHANG L L, JIN Y Q, YANG X S et al. Convolutional neural network-based multi-label classification of PCB defects[J]. The Journal of Engineering, 1612-1616(2018).
[10] CAI N, CEN G D, WU J X et al. SMT solder joint inspection via a novel cascaded convolutional neural network[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 8, 670-677(2018).
[11] LI C J, QU Z, WANG S Y et al. A method of defect detection for focal hard samples PCB based on extended FPN model[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 12, 217-227(2022).
[12] CHAN K Y, YIU K F C, LAM H K et al. Ball bonding inspections using a conjoint framework with machine learning and human judgement[J]. Applied Soft Computing, 102, 107115(2021).
[13] CHEN Y B, WANG J R, WANG G T. Intelligent welding defect detection model on improved R-CNN[J]. IETE Journal of Research, 69, 9235-9244(2023).
[14] ZHANG X B, ZHANG Y, HU M et al. Insulator defect detection based on YOLO and SPP-Net[C], 403-407(2020).
[15] ZHANG Y Y, ZHANG Z W, FU K et al. Adaptive defect detection for 3-D printed lattice structures based on improved faster R-CNN[J]. IEEE Transactions on Instrumentation and Measurement, 71, 5020509(2022).
[16] YANG J, LI S B, WANG Z et al. Real-time tiny part defect detection system in manufacturing using deep learning[J]. IEEE Access, 7, 89278-89291(2019).
[17] WANG R X, CHEUNG C F. CenterNet-based defect detection for additive manufacturing[J]. Expert Systems with Applications, 188, 116000(2022).
[18] PAN H H, PANG Z J, WANG Y W et al. A new image recognition and classification method combining transfer learning algorithm and MobileNet model for welding defects[J]. IEEE Access, 8, 119951-119960(2020).
[19] ZHANG H, JIANG L X, LI C Q. CS-ResNet: cost-sensitive residual convolutional neural network for PCB cosmetic defect detection[J]. Expert Systems with Applications, 185, 115673(2021).
[20] BASKARAN V M et al. A deep context learning based PCB defect detection model with anomalous trend alarming system[J]. Results in Engineering, 17, 100968(2023).
[21] WANG X, GAO J S, HOU B J et al. A lightweight modified YOLOX network using coordinate attention mechanism for PCB surface defect detection[J]. IEEE Sensors Journal, 22, 20910-20920(2022).
[22] LI J, GU J N, HUANG Z D et al. Application research of improved YOLO V3 algorithm in PCB electronic component detection[J]. Applied Sciences, 9, 3750(2019).
[23] MAMIDI J S S V, SAMEER S, BAYANA J. A Light Weight Version of PCB Defect Detection system using YOLO V4 Tiny[C], 441-445(2022).
[24] CHEN W, HUANG Z T, MU Q et al. PCB defect detection method based on transformer-YOLO[J]. IEEE Access, 10, 129480-129489(2022).
[25] AMINI MR, CANU S, FISCHER A et al. SUNKARA R, LUO T[C], 443-459(2023).
[26] CHEN J R, KAO S H, HE H et al. Run, don’t walk: chasing higher FLOPS for faster neural networks[C], 12021-12031(2023).
[27] CHEN L C, PAPANDREOU G, KOKKINOS I et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 834-848(2018).
[28] QUAN Y, ZHANG D, ZHANG L Y et al. Centralized feature pyramid for object detection[J]. IEEE Transactions on Image Processing, 32, 4341-4354(2023).
[30] REN S Q, HE K M, GIRSHICK R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).
[31] LIN T Y, GOYAL P, GIRSHICK R et al. Focal loss for dense object detection[C], 2999-3007(2017).
[32] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C], 10778-10787(2020).
[34] CHEN M F, CHEN P, WANG S et al. TFT-LCD Mura defect visual inspection method in multiple backgrounds[J]. Journal of the Society for Information Display, 30, 818-831(2022).
[35] CHEN P, CHEN M F, WANG S et al. Real-time defect detection of TFT-LCD displays using a lightweight network architecture[J]. Journal of Intelligent Manufacturing, 35, 1337-1352(2024).
Get Citation
Copy Citation Text
Liying ZHU, Sen WANG, Aiping SHEN, Xuangang LI. Visual inspection of soldering defects on board surfaces against complex backgrounds[J]. Optics and Precision Engineering, 2024, 32(14): 2256
Category:
Received: Mar. 13, 2024
Accepted: --
Published Online: Sep. 27, 2024
The Author Email: Sen WANG (wangsen0401@126.com)