Journal of Semiconductors, Volume. 41, Issue 7, 071901(2020)

Contact engineering for two-dimensional semiconductors

Peng Zhang1, Yiwei Zhang1, Yi Wei2, Huaning Jiang1, Xingguo Wang1, and Yongji Gong1
Author Affiliations
  • 1School of Materials Science and Engineering, Beihang University, Beijing 100191, China
  • 2State Key Laboratory of Organic–Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029 China
  • show less
    References(101)

    [1] R Schaller. Moore's law: past, present and future. IEEE Spectrum, 34, 52(1997).

    [2] D J Frank, R H Dennard, E Nowak et al. Device scaling limits of Si MOSFETs and their application dependencies. Proc IEEE, 89, 259(2001).

    [3] D Sarkar, X J Xie, W Liu et al. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature, 526, 91(2015).

    [4] A J Arnold, A Razavieh, J R Nas et al. Mimicking neurotransmitter release in chemical synapses via hysteresis engineering in MoS2 transistors. ACS Nano, 11, 3110(2017).

    [5] Y J Gong, G Shi, Z H Zhang et al. Direct chemical conversion of graphene to boronand nitrogen-and carbon-containing atomic layers. Nat Common, 5, 3193(2014).

    [6] Y L Xie, B Lian, B Jäck et al. Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene. Nature, 572, 101(2019).

    [7] L F Li, W Liu, A Y Gao et al. Plasmon excited ultrahot carriers and negative differential photoresponse in a vertical graphene van der Waals heterostructure. Nano Lett, 19, 3295(2019).

    [8] K S Novoselov, A K Geim, S V Morozov et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438, 197(2005).

    [9] Y B Zhang, Y W Tan, H L Stormer et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 438, 201(2005).

    [10] C Lee, X D Wei, J W Kysar et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385(2008).

    [11] Y P Liu, I Yudhistira, M Yang et al. Phonon-mediated colossal magnetoresistance in graphene/black phosphorus heterostructures. Nano Lett, 18, 3377(2018).

    [12] S Y Huang, G W Zhang, F R Fan et al. Strain-tunable van der Waals interactions in few-layer black phosphorus. Nat Common, 10, 2447(2019).

    [13] K Chaudhary, M Tamagnone, M Rezaee et al. Engineering phonon polaritons in van der Waals heterostructures to enhance in-plane optical anisotropy. Sci Adv, 5, eaau7171(2019).

    [14] J M Kim, S S Baik, S H Ryu et al. Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science, 349, 723(2015).

    [15] R M Peng, K Khaliji, N Youngblood et al. Midinfrared electro-optic modulation in few-layer black phosphorus. Nano Lett, 17, 6315(2017).

    [16] Z Liu, Y G Gong, W Zhou et al. Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride. Nat Commun, 4, 2541(2013).

    [17] E X Wu, Y Xie, J Zhang et al. Dynamically controllable polarity modulation of MoTe2 field-effect transistors through ultraviolet light and electrostatic activation. Sci Adv, 5, eaav3430(2019).

    [18] H J Park, R Y J Tay, X Wang et al. Double-spiral hexagonal boron nitride and shear strained coalescence boundary. Nano Lett, 19, 4229(2019).

    [19] L Song, L J Ci, H Lu et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett, 10, 3209(2010).

    [20] L J Ci, L Song, C J Jin et al. Atomic layers of hybridized boron nitride and graphene domains. Nat Mater, 9, 430(2010).

    [21] Y G Gong, J H Lin, X L Wang et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat Mater, 13, 1135(2014).

    [22] Y G Gong, Z Liu, A R Lupini et al. Band gap engineering and layer-by-layer mapping of selenium doped molybdenum disulfide. Nano Lett, 14, 442(2014).

    [23] Y Ma, P M Ajayan, Y J Gong et al. Recent advances in synthesis and applications of 2D junctions. Small, 14, 1801606(2018).

    [24] Y C Lin, S S Li, H P Komsa et al. Revealing the atomic defects of WS2 governing its distinct optical emissions. Adv Funct Mater, 28, 1704210(2017).

    [25] L F Sun, W S Leong, S Z Yang et al. Concurrent synthesis of high-performance monolayer transition metal disulfdes. Adv Funct Mater, 27, 1605896(2017).

    [26] Y Zhou, H J Jang, J M Woods et al. Direct synthesis of large-scale WTe2 thin films with low thermal conductivity. Adv Funct Mater, 27, 1605928(2017).

    [27] Y D Zhao, J S Qiao, P Yu et al. Extraordinarily strong interlayer interaction in 2D layered PtS2. Adv Mater, 28, 2399(2017).

    [28] J X Wu, Y J Liu, Z J Tan et al. Chemical patterning of high-mobility semiconducting 2D Bi2O2Se crystals for integrated optoelectronic devices. Adv Mater, 29, 1704060(2017).

    [29] L Li, Y C Guo, Y P Sun et al. A general method for the chemical synthesis of large-scale, seamless transition metal dichalcogenide electronics. Adv Mater, 30, 1706215(2018).

    [30] Y H Huan, J P Shi, X L Zou et al. Vertical 1T-TaS2 synthesis on nanoporous gold for high-performance electrocatalytic applications. Adv Mater, 30, 1705916(2018).

    [31] T Zhang, L Fu. Controllable chemical vapor deposition growth of two-dimensional heterostructures. Chem, 4, 671(2018).

    [32] R J Xu, H Jang, M H Lee et al. Vertical MoS2 double-layer memristor with electrochemical metallization as an atomic-scale synapse with switching thresholds approaching 100 mV. Nano Lett, 19, 2411(2019).

    [33] Y B Zhu, Y J Li, R A Arefe et al. Monolayer molybdenum disulfide transistors with single-atomthick gates. Nano Lett, 18, 3807(2018).

    [34] S Kim, Z P Yao, J M Lim et al. Atomic-scale observation of electrochemically reversible phase transformations in SnSe2 single crystals. Adv Mater, 30, 1804925(2018).

    [35] C S Liu, X Yan, X F Song et al. A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications. Nat Nano, 13, 404(2018).

    [36] A Y Gao, J W Lai, Y J Wang et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nat Nano, 14, 217(2019).

    [37] S Das, J A Robinson, M Dubey et al. Beyond graphene: progress in novel two dimensional materials and van der Waals solids. Annu Rev Mater Res, 45, 1(2015).

    [38] V K Sangwan, M E Beck, A Henning et al. Self-aligned van der Waals heterojunction diodes and transistors. Nano Lett, 18, 1421(2018).

    [39] D Lembke, A Kis. Breakdown of high-performance monolayer MoS2 transistors. ACS Nano, 6, 10070(2012).

    [40] S Manzeli, D Ovchinnikov, D Pasquier et al. 2D transition metal dichalcogenides. Nat Rev Mater, 2, 17033(2017).

    [41] W Luo, M J Zhu, G Peng et al. Carrier modulation of ambipolar few-layer MoTe2 transistors by MgO surface charge transfer doping. Adv Mater, 28, 1704539(2018).

    [42] A Avsar, K Marinov, E G Marin et al. Reconfgurable diodes based on vertical WSe2 transistors with van der Waals bonded contacts. Adv Mater, 30, 17072000(2018).

    [43] S Kim, J Maassen, J Lee et al. Interstitial Mo-assisted photovoltaic effect in multilayer MoSe2 phototransistors. Adv Mater, 30, 1705542(2018).

    [44] S H Song, M K Joo, M Neumann et al. Probing defect dynamics in monolayer MoS2 via noise nanospectroscopy. Nat Commun, 8, 2121(2017).

    [45] H Tian, Q S Guo, Y J Xie et al. Anisotropic black phosphorus synaptic device for neuromorphic applications. Adv Mater, 28, 4991(2016).

    [46] D Jena, K Banerjee, G H Xing et al. 2D crystal semiconductors: Intimate contacts. Nat Mater, 13, 2640(2014).

    [47] L P Xu, P Zhang, H N Jiang et al. Large-scale growth and field-effect transistors electrical engineering of atomic-layer SnS2. Small, 15, 1904116(2019).

    [48] G H Han, D L Duong, D H Keum et al. Van der Waals metallic transition metal dichalcogenides. Chem Rev, 118, 6297(2018).

    [49] D S Schulman, A J Arnold, S Das. Contact engineering for 2D materials and devices. Chem Soc Rev, 47, 3037(2018).

    [50] M Baranowski, A Surrente, L Klopotowski et al. Probing the interlayer exciton physics in a MoS2/MoSe2/MoS2 van der Waals heterostructure. Nano Lett, 17, 6360(2017).

    [51] M A Islam, J H Kim, A Schropp et al. Centimeter-scale 2D van der Waals vertical heterostructures integrated on deformable substrates enabled by gold sacrificial layer-assisted growth. Nano Lett, 17, 6157(2017).

    [52] C Y Yan, C H Gong, P H Wang et al. 2D group IVB transition metal dichalcogenides. Adv Funct Mater, 28, 1803305(2018).

    [53] D Voiry, A Mohite, M Chhowalla. Phase engineering of transition metal dichalcogenides. Chem Soc Rev, 44, 2702(2015).

    [54] X S Wang, Z G Song, W Wen et al. Potential 2D materials with phase transitions: structure, synthesis, and device applications. Adv Mater, 31, 1804682(2019).

    [55] M S Stark, K L Kuntz, S J Martens et al. Intercalation of layered materials from bulk to 2D. Adv Mater, 31, 1808213(2019).

    [56] H Li, S C Ruan, Y J Zeng. Intrinsic van der Waals magnetic materials from bulk to the 2D limit: new frontiers of spintronics. Adv Mater, 31, 1900065(2019).

    [57] A Allain, J H Kang, K Banerjee et al. Electrical contacts to two-dimensional semiconductors. Nat Mater, 14, 1195(2015).

    [58] J Kang, W Liu, D Sarkar. Computational study of metal contacts to monolayer transition­metal dichalcogenide semiconductors. Phys Rev X, 4, 031005(2014).

    [59] J C Ranuárez, M J Deen, C H Chen. A review of gate tunneling current in MOS devices. Microelectron Reliab, 46, 1939(2016).

    [60] Y Liu, J Guo, E B Zhu et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature, 557, 696(2018).

    [61] C D English, G Shine, V E Dorgan et al. Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition. Nano Lett, 16, 3824(2016).

    [62] K Stokbro, M Engelund, A Blom. Atomic­scale model for the contact resistance of the nickel­graphene interface. Phys Rev B, 85, 165442(2012).

    [63] I Popov, G Seifert, D Tománek. Designing electrical contacts to MoS2 monolayers: a computational study. Phys Rev Lett, 108, 156802(2012).

    [64] W Liu, J H Kang, W Cao et al. High­ performance few­ layer­ MoS2 field-effect-transistor with record low contact­resistance. IEEE Int Electron Devices Meet, 19.4. 1(2013).

    [65] L Wang, I Meric, P Y Huang et al. One-dimensional electrical contact to a two-dimensional material. Science, 342, 614(2013).

    [66] X Cui, G H Lee, Y D Kim et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat Mater, 10, 534(2015).

    [67] Y Chai, R Ionescu, S S Su et al. Making one-dimensional electrical contacts to molybdenum disulfid-based heterostructures through plasma etching. Phys Status Solidi A, 213, 1358(2016).

    [68] Y Matsuda, W Q Deng, W A Goddard. Contact resistance for “end-contacted” metal−graphene and metal−nanotube interfaces from quantum mechanics. J Phys Chem C, 114, 17845(2010).

    [69] B Karpiak, A Dankert, A W Cummings et al. 1D ferromagnetic edge contacts to 2D graphene/h-BN heterostructures. 2D Mater, 5, 014001(2017).

    [70] Y Zhang, L Yin, J W Chu et al. Edge-epitaxial growth of 2D NbS2-WS2 lateral metal-semiconductor heterostructures. Adv Mater, 30, 1803665(2018).

    [71] Y J Gong, S D Lei, G L Ye et al. Two-step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Lett, 15, 6135(2015).

    [72] Y G Gong, Z Lin, G L Ye et al. Tellurium-assisted low-temperature synthesis of MoS2 and WS2 monolayers. ACS Nano, 9, 11658(2015).

    [73] Q Q Ji, C Li, J L Wang et al. Metallic vanadium disulfide nanosheets as a platform material for multifunctional electrode applications. Nano Lett, 17, 4908(2017).

    [74] J D Zhou, J H Lin, X W Huang et al. A library of atomically thin metal chalcogenides. Nature, 556, 358(2018).

    [75] W S Leong, Q Q Ji, N N Mao et al. Synthetic lateral metal–semiconductor heterostructures of transition metal disulfides. J Am Chem Soc, 140, 12354(2018).

    [76] C S Lee, S J Oh, H Heo et al. Epitaxial van der Waals contacts between transition-metal dichalcogenide monolayer polymorphs. Nano Lett, 19, 1814(2019).

    [77] R X Wu, Q Y Tao, W Q Dang et al. van der Waals epitaxial growth of atomically thin 2D metals on dangling-bond-free WSe2 and WS2. Adv Funct Mater, 29, 1806611(2019).

    [78] Y Y Jin, Z Y Zeng, Z W Xu et al. Synthesis and transport properties of degenerate p-type Nb-doped WS2 monolayers. Chem Mater, 31, 3534(2019).

    [79] J Suh, T E Park, D Y Lin et al. Doping against the native propensity of MoS2: degenerate hole doping by cation substitution. Nano Lett, 14, 6976(2014).

    [80] R Kappera, D Voiry, S E Yalcin et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat Mater, 13, 1128(2014).

    [81] J Q Zhu, Z G Wang, H Yu et al. Argon plasma induced phase transition in monolayer MoS2. J Am Chem Soc, 139, 10216(2017).

    [82] Y J Gong, H T Yuan, C L Wu et al. Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nat Nano, 13, 294(2018).

    [83] W Schottky. Zur Halbleitertheorie der sperrschicht-und spitzengleichrichter. Z Phys A, 113, 367(1939).

    [84] N Mott. The theory of crystal rectifers. Proc R Soc Lond A, 171, 27(1939).

    [85] J Bardeen. Surface states and rectifcation at a metal semi-conductor contact. Phys Rev, 71, 717(1947).

    [86] S Das, H Y Chen, A V Penumatcha et al. High performance multi-layer MoS2 transistors with scandium contacts. Nano Lett, 13, 100(2013).

    [87] Y Wang, J C Kim, R J Wu et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature, 568, 70(2019).

    [88]

    [89] Y Khatami, H Li, C Xu et al. Metal­-to-­multilayer-­graphene contact—Part II: analysis of contact resistance. IEEE Trans Electron Devices, 59, 2453(2012).

    [90] Y Khatami, H Li, C Xu et al. Metal­-to-­multilayer-­graphene contact—Part I: contact resistance modeling. IEEE Trans Electron Devices, 59, 2444(2012).

    [91] M Zhao, Y Ye, Y Han et al. Large-scale chemical assembly of atomically thin transistors and circuits. Nat Nano, 11, 954(2016).

    [92] W Hong, G W Shim, S Y Yang et al. Improved electrical contact properties of MoS2-graphene lateral heterostructure. Adv Funct Mater, 29, 1807550(2019).

    [93] W S Leong, C T Nai, J T L Tong. What does annealing do to metal-graphene contacts. Nano Lett, 14, 3840(2014).

    [94] F Léonard, A A Talin. Electrical contacts to one- and two-dimensional nanomaterials. Nat Nano, 6, 773(2011).

    [95] V Heine. Theory of surface states. Phys Rev, 138, A1689(1965).

    [96] L N Liu, J X Wu, L Y Wu et al. Phase-selective synthesis of 1T’ MoS2 monolayers and heterophase bilayers. Nat Mater, 17, 1108(2018).

    [97] J Y Zheng, X X Yan, Z X Lu et al. High-mobility multilayered MoS2 flakes with low contact resistance grown by chemical vapor deposition. Adv Mater, 29, 1604540(2017).

    [98] C Gong, L Colombo, R M Wallace et al. The unusual mechanism of partial fermi level pinning at metal –MoS2 interfaces. Nano Lett, 14, 1714(2014).

    [99] W A Saidi. Trends in the adsorption and growth morphology of metals on the MoS2(001) surface. Cryst Growth Des, 15, 3190(2015).

    [100] L J Meng, Y Ma, K P Si et al. Recent advances of phase engineering in group VI transition metal dichalcogenides. Tungsten, 1, 46(2019).

    [101] J Li, X D Yang, Y Liu et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature, 579, 368(2020).

    Tools

    Get Citation

    Copy Citation Text

    Peng Zhang, Yiwei Zhang, Yi Wei, Huaning Jiang, Xingguo Wang, Yongji Gong. Contact engineering for two-dimensional semiconductors[J]. Journal of Semiconductors, 2020, 41(7): 071901

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Mar. 26, 2020

    Accepted: --

    Published Online: Sep. 10, 2021

    The Author Email:

    DOI:10.1088/1674-4926/41/7/071901

    Topics