Journal of Quantum Optics, Volume. 29, Issue 2, 20801(2023)

Fano Resonance of Gold Nanorod Dimers

LI Xing-tong1, CHEN Yu1,2, MA Qiang1, JU Zhi-ping1, LI Kang1, CHEN Meng-di1, WU Bo-tao1, and WU E1,2,3、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(35)

    [1] [1] GATES B D, XU Q, STEWART M, et al. New approaches to nanofabrication: molding, printing, and other techniques[J]. Chemical Reviews, 2005, 105(4):1171-1196. DOI: 10.1021/cr030076o.

    [2] [2] KOYA A N, ZHU X, OHANNESIAN N, et al. Nanoporous metals: From plasmonic properties to applications in enhanced spectroscopy and photocatalysis[J]. ACS Nano, 2021, 15(4):6038-6060. DOI: 10.1021/acsnano.0c10945.

    [3] [3] CHEN K, WANG H. Plasmon-driven photocatalytic molecular transformations on metallic nanostructure surfaces: mechanistic insights gained from plasmon-enhanced Raman spectroscopy[J]. Molecular Systems Design & Engineering, 2021, 6(4):250-280. DOI: 10.1039/D1ME00016K.

    [4] [4] WEI H, XU H. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy[J]. Nanoscale, 2013, 5(22):10794-10805. DOI: 10.1039/c3nr02924g.

    [5] [5] WANG X, HUANG S C, HU S, et al. Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy[J]. Nature Reviews Physics, 2020, 2(5):253-271. DOI: 10.1038/s42254-020-0171-y.

    [6] [6] JANG Y H, JANG Y J, KIM S, et al. Plasmonic solar cells: from rational design to mechanism overview[J]. Chemical Reviews, 2016, 116(24):14982-15034. DOI: 10.1021/acs.chemrev.6b00302.

    [7] [7] KOYA A N, CUNHA J, GUO T L, et al. Novel plasmonic nanocavities for optical trapping-assisted biosensing applications[J]. Advanced Optical Materials, 2020, 8(7):1901481. DOI: 10.1002/adom.201901481.

    [8] [8] LAL S, LINK S, HALAS N J. Nano-optics from sensing to waveguiding[J]. Nature Photonics, 2007, 1(11):641-648. DOI: 10.1038/nphoton.2007.223.

    [9] [9] YANG D J, YANG Z J, LI Y Y, et al. Tunable Fano resonance in rod-ring plasmonic nanocavities[J]. Plasmonics, 2015, 10:263-269. DOI: 10.1007/s11468-014-9804-2.

    [10] [10] NGUYEN T K, LE T D, DANG P T, et al. Asymmetrically engineered metallic nanodisk clusters for plasmonic Fano resonance generation[J]. Journal of the Optical Society of America B: Optical Physics, 2017, 34(3):668-672. DOI: 10.1364/JOSAB.34.000668.

    [11] [11] NORDLANDER P, OUBRE C, PRODAN E, et al. Plasmon hybridization in nanoparticle dimers[J]. Nano Letters, 2004, 4(5):899-903. DOI: 10.1021/NL049681C.

    [12] [12] HAO F, SONNEFRAUD Y, DORPE P V, et al. Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance[J]. Nano Letters, 2008, 8(11):3983-3988. DOI: 10.1021/nl802509r.

    [13] [13] HALAS N J, LAL S, CHANG W S, et al. Plasmons in strongly coupled metallic nanostructures[J]. Chemical Reviews, 2011, 111(6):3913-3961. DOI: 10.1021/cr200061k.

    [14] [14] DILLU V, SINHA R K. Enhanced Fano resonance in silver ellipsoidal plasmonic crystal cavity[J]. Journal of Applied Physics, 2013, 114(23):234305. DOI: 10.1063/1.4851775.

    [15] [15] JAIN P K, HUANG W, EL-SAYED M A. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation[J]. Nano Letters, 2007, 7(7):2080-2088. DOI: 10.1021/nl071008a.

    [16] [16] CHRIST A, EKINCI Y, SOLAK H H, et al. Controlling the Fano interference in a plasmonic lattice[J]. Physical Review B, 2007, 76(20):201405. DOI: 10.1103/PhysRevB.76.201405.

    [17] [17] CHRIST A, MARTIN O J F, EKINCI Y, et al. Symmetry breaking in a plasmonic metamaterial at optical wavelength[J]. Nano Letters, 2008, 8(8):2171-2175. DOI: 10.1021/nl0805559.

    [18] [18] LUK’YANCHUK B, ZHELUDEV N I, MAIER S A, et al. The Fano resonance in plasmonic nanostructures and metamaterials[J]. Nature Materials, 2010, 9(9):707-715. DOI: 10.1038/nmat2810.

    [19] [19] YANG Z J, ZHANG Z S, ZHANG L H, et al. Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers[J]. Optics Letters, 2011, 36(9):1542-1544. DOI: 10.1364/OL.36.001542.

    [20] [20] WOO K C, SHAO L, CHEN H, et al. Universal scaling and Fano resonance in the plasmon coupling between gold nanorods[J]. ACS Nano, 2011, 5(7):5976-5986. DOI: 10.1021/nn2017588.

    [21] [21] BINFENG Y, GUOHUA H, JIAWEI C, et al. Fano resonances induced by strong interactions between dipole and multipole plasmons in T-shaped nanorod dimer[J]. Plasmonics, 2014, 9:691-698. DOI: 10.1007/s11468-014-9688-1.

    [22] [22] GONG T, GUAN F, WEI Z, et al. Tunable Magnetic Fano Resonances on Au Nanosphere Dimer-Dielectric-Gold Film Sandwiched Structure[J]. Frontiers in Physics, 2021, 9:691027. DOI: 10.3389/fphy.2021.691027.

    [23] [23] CHOW T H, LAI Y, CUI X, et al. Colloidal gold nanorings and their plasmon coupling with gold nanospheres[J]. Small, 2019, 15(35):1902608. DOI: 10.1002/smll.201902608.

    [24] [24] QIN F, LAI Y, YANG J, et al. Deep Fano resonance with strong polarization dependence in gold nanoplate-nanosphere heterodimers[J]. Nanoscale, 2017, 9(35):13222-13234. DOI: 10.1039/c7nr04524g.

    [25] [25] DANA B D, KOYA A N, SONG X, et al. Effect of Symmetry Breaking on Plasmonic Coupling in Nanoring Dimers[J]. Plasmonics, 2020, 15(6):1977-1988. DOI: 10.1007/s11468-020-01178-8.

    [26] [26] GUO Y, HUO Y, JIANG X, et al. Generation of multiple Fano resonances in plasmonic panda’s eye structures[J]. Physica Scripta, 2020, 95(4):045503. DOI: 10.1088/1402-4896/ab6634.

    [27] [27] VERELLEN N, SONNEFRAUD Y, SOBHANI H, et al. Fano resonances in individual coherent plasmonic nanocavities[J]. Nano Letters, 2009, 9(4):1663-1667. DOI: 10.1021/nl9001876.

    [28] [28] SHAO L, FANG C, CHEN H, et al. Distinct plasmonic manifestation on gold nanorods induced by the spatial perturbation of small gold nanospheres[J]. Nano Letters, 2012, 12(3):1424-1430. DOI: 10.1021/nl2041063.

    [29] [29] GARAI M, ZHANG T, GAO N, et al. Single particle studies on two-photon photoluminescence of gold nanorod-nanosphere heterodimers[J]. The Journal of Physical Chemistry C, 2016, 120(21):11621-11630. DOI: 10.1021/ACS.JPCC.8B07094.

    [30] [30] GREYBUSH N J, SABOKTAKIN M, YE X, et al. Plasmon-enhanced upconversion luminescence in single nanophosphor-nanorod heterodimers formed through template-assisted self-assembly[J]. ACS Nano, 2014, 8(9):9482-9491. DOI: 10.1021/nn503675a.

    [31] [31] WANG K, FENG L, WANG J, et al. Alternative method for design and optimization of the ring resonator used in micro-optic gyro[J]. Applied Optics, 2013, 52(7):1481-1486. DOI: 10.1364/AO.52.001481.

    [32] [32] TAFLOVE A, HAGNESS S C, PIKET-MAY M. Computational electromagnetics: the finite-difference time-domain method[J]. The Electrical Engineering Handbook, 2005, 3:629-670. DOI: 10.1016/B978-012170960-0/50046-3.

    [33] [33] PALIK, EDWARD D. Handbook of optical constants of solids[J]. Academic Press, 1985. DOI: 10.1080/716099804a.

    [34] [34] ZHANG S Z, SUN L D, WANG J F, et al. Nanonecklaces assembled from gold rods, spheres, and bipyramids[J]. Chemical Communications, 2007, 18:1816-1818. DOI: 10.1039/b618818d.

    [35] [35] CI X T, WU B T, WU E, et al. Tunable Fano resonances in heterogenous Al-Ag nanorod dimers[J]. Applied Physics A: Materials Science Processing, 2014, 117:955-960. DOI: 10.1007/s00339-014-8479-z.

    Tools

    Get Citation

    Copy Citation Text

    LI Xing-tong, CHEN Yu, MA Qiang, JU Zhi-ping, LI Kang, CHEN Meng-di, WU Bo-tao, WU E. Fano Resonance of Gold Nanorod Dimers[J]. Journal of Quantum Optics, 2023, 29(2): 20801

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 1, 2023

    Accepted: --

    Published Online: Mar. 15, 2024

    The Author Email: WU E (ewu@phy.ecnu.edu.cn)

    DOI:10.3788/jqo20232902.0801

    Topics