Journal of the Chinese Ceramic Society, Volume. 53, Issue 5, 1298(2025)

Mechanism, Materials and Modification Strategies of Photothermal Catalysis

LEI Wanying... DU Yi, YANG Xinxin, TAN Ziqiang, GAO Zhi, LI Shisheng and ZHANG Xinshu |Show fewer author(s)
Author Affiliations
  • College of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
  • show less
    References(83)

    [1] [1] HAYAT A, AJMAL Z, ALZAHRANI A Y A, et al. The photocatalytic H2O2 production: Design strategies, photocatalyst advancements, environmental applications and future prospects[J]. Coord Chem Rev, 2025, 522: 216218.

    [2] [2] XUE S X, ZHOU T, WU P, et al. Ni0.85Se@CoFe LDH heterostructure nanosheet arrays on Ni foam as efficient electrocatalysts for enhanced oxygen evolution[J]. Int J Hydrog Energy, 2024, 51: 1349-1359.

    [3] [3] JIN H G, ZHAO P C, QIAN Y Y, et al. Metal-organic frameworks for organic transformations by photocatalysis and photothermal catalysis[J]. Chem Soc Rev, 2024, 53(18): 9378-9418.

    [5] [5] YANG X R, CHEN Z, ZHAO W, et al. Recent advances in photodegradation of antibiotic residues in water[J]. Chem Eng J, 2021, 405: 126806.

    [6] [6] ARAMENDIA E, BROCKWAY P.Wind power and solar photovoltaics found to have higher energy returns than fossil fuels[J]. Nat Energy, 2024, 9: 775-776.

    [7] [7] HASAN A, ALAZZAM A, ABU-NADA E. Direct absorption solar collectors: Fundamentals, modeling approaches, design and operating parameters, advances, knowledge gaps, and future prospects[J]. Prog Energy Combust Sci, 2024, 103: 101160.

    [10] [10] XIE B Q, HU D, KUMAR P, et al. Heterogeneous catalysisvialight-heat dual activation: A path to the breakthrough in C1 chemistry[J]. Joule, 2024, 8(2): 312-333.

    [11] [11] SONG C Q, WANG Z H, YIN Z, et al. Principles and applications of photothermal catalysis[J]. Chem Catal, 2022, 2(1): 52-83.

    [12] [12] LINIC S, CHRISTOPHER P, INGRAM D B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy[J]. Nat Mater, 2011, 10(12): 911-921.

    [13] [13] CORTS E, GRZESCHIK R, MAIER S A, et al. Experimental characterization techniques for plasmon-assisted chemistry[J]. Nat Rev Chem, 2022, 6(4): 259-274.

    [14] [14] GOVOROV A O, ZHANG H, DEMIR H V, et al. Photogeneration of hot plasmonic electrons with metal nanocrystals: Quantum description and potential applications[J]. Nano Today, 2014, 9(1): 85-101.

    [15] [15] ZHAO B H, ZHANG B. Electrochemistry-inspired design of thermocatalysts[J]. Nat Catal, 2024, 7: 229-230.

    [16] [16] TAKATA T, JIANG J Z, SAKATA Y, et al. Photocatalytic water splitting with a quantum efficiency of almost unity[J]. Nature, 2020, 581(7809): 411-414.

    [17] [17] NG M, JOVIC V, WATERHOUSE G I N, et al. Recent progress in photothermal catalyst design for methanol production[J]. Emergent Mater, 2023, 6(4): 1097-1115.

    [18] [18] ZHOU L N, SWEARER D F, ZHANG C, et al. Quantifying hot carrier and thermal contributions in plasmonic photocatalysis[J]. Science, 2018, 362(6410): 69-72.

    [19] [19] GHOUSSOUB M, XIA M K, DUCHESNE P N, et al. Principles of photothermal gas-phase heterogeneous CO2 catalysis[J]. Energy Environ Sci, 2019, 12(4): 1122-1142.

    [20] [20] MENG X G, LIU L Q, OUYANG S X, et al. Nanometals for solar-to-chemical energy conversion: From semiconductor-based photocatalysis to plasmon-mediated photocatalysis and photo-thermocatalysis[J]. Adv Mater, 2016, 28(32): 6781-6803.

    [21] [21] WANG Z Q, YANG Z Q, KADIROVA Z C, et al. Photothermal functional material and structure for photothermal catalytic CO2 reduction: Recent advance, application and prospect[J]. Coord Chem Rev, 2022, 473: 214794.

    [22] [22] ZHANG J Q, CHEN H J, DUAN X G, et al. Photothermal catalysis: From fundamentals to practical applications[J]. Mater Today, 2023, 68: 234-253.

    [23] [23] SARINA S, ZHU H Y, XIAO Q, et al. Viable photocatalysts under solar-spectrum irradiation: Nonplasmonic metal nanoparticles[J]. Angew Chem Int Ed, 2014, 53(11): 2935-2940.

    [24] [24] YEN C W, EL-SAYED M A. Plasmonic field effect on the hexacyanoferrate (III)-thiosulfate electron transfer catalytic reaction on gold nanoparticles: Electromagnetic or thermal?[J]. J Phys Chem C, 2009, 113(45): 19585-19590.

    [25] [25] WANG C L, ASTRUC D. Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion[J]. Chem Soc Rev, 2014, 43(20): 7188-7216.

    [26] [26] LINIC S, ASLAM U, BOERIGTER C, et al. Photochemical transformations on plasmonic metal nanoparticles[J]. Nat Mater, 2015, 14(6): 567-576.

    [27] [27] BISOYI H K, URBAS A M, LI Q. Soft materials driven by photothermal effect and their applications[J]. Adv Opt Mater, 2018, 6(15): 1800458.

    [28] [28] WANG J, LI Y Y, DENG L, et al. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles[J]. Adv Mater, 2017, 29(3): 1603730.

    [29] [29] FAN Q, WU L, LIANG Y, et al. The role of micro-nano pores in interfacial solar evaporation systems-A review[J]. Appl Energy, 2021, 292: 116871.

    [30] [30] YANG J L, PANG Y S, HUANG W X, et al. Functionalized graphene enables highly efficient solar thermal steam generation[J]. ACS Nano, 2017, 11(6): 5510-5518.

    [31] [31] SCHPPI R, RUTZ D, DHLER F, et al. Drop-in fuels from sunlight and air[J]. Nature, 2022, 601(7891): 63-68.

    [32] [32] CAI M J, WU Z Y, LI Z, et al. Greenhouse-inspired supra-photothermal CO2 catalysis[J]. Nat Energy, 2021, 6: 807-814.

    [33] [33] KANG L L, LIU X Y, WANG A Q, et al. Photo-thermo catalytic oxidation over a TiO2-WO3-supported platinum catalyst[J]. Angew Chem Int Ed, 2020, 59(31): 12909-12916.

    [34] [34] LI X J, LIN J K, LI J Q, et al. Temperature-induced variations in photocatalyst properties and photocatalytic hydrogen evolution: Differences in UV, visible, and infrared radiation[J]. ACS Sustainable Chem Eng, 2021, 9(21): 7277-7285.

    [35] [35] ZHU L L, GAO M M, PEH C K N, et al. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications[J]. Mater Horiz, 2018, 5(3): 323-343.

    [36] [36] ZHU S Y, XU S, GUO Y J, et al. Defect damping-enhanced plasmonic photothermal conversion[J]. ACS Nano, 2023, 17(11): 10300-10312.

    [37] [37] LV H H, MACHARIA D K, LIU Z X, et al. Au-loaded ZIF-8 derived porous carbon with improved photothermal catalysis ability from interfacial heating instead of hot-electrons[J]. Chem Eng J, 2024, 482: 148963.

    [38] [38] GOVOROV A O, RICHARDSON H H. Generating heat with metal nanoparticles[J]. Nano Today, 2007, 2(1): 30-38.

    [39] [39] KONG W F, XING Z P, FANG B, et al. Plasmon Ag/Na-doped defective graphite carbon nitride/NiFe layered double hydroxides Z-scheme heterojunctions toward optimized photothermal-photocatalytic- Fenton performance[J]. Appl Catal B Environ, 2022, 304: 120969.

    [40] [40] LI G H, ZHANG M, CHEN J, et al. Combined effects of Pt nanoparticles and oxygen vacancies to promote photothermal catalytic degradation of toluene[J]. J Hazard Mater, 2023, 449: 131041.

    [41] [41] YU L Q, GUO R T, XIA C, et al. Bismuth-metal and carbon quantum dot Co-doped NiAl-LDH heterojunctions for promoting the photothermal catalytic reduction of CO2[J]. Small, 2025, 21(5): 2409901.

    [42] [42] WANG Z, YANG C Y, LIN T Q, et al. Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium- reduced black titania[J]. Energy Environ Sci, 2013, 6(10): 3007-3014.

    [43] [43] ZHANG M, LI G H, LI Q, et al. In situ construction of manganese oxide photothermocatalysts for the deep removal of toluene by highly utilizing sunlight energy[J]. Environ Sci Technol, 2023, 57(10): 4286-4297.

    [44] [44] CHEN Z Z, YAN Y J, SUN K Q, et al. Plasmonic coupling-boosted photothermal composite photocatalyst for achieving near-infrared photocatalytic hydrogen production[J]. J Colloid Interface Sci, 2024, 661: 12-22.

    [45] [45] U H C, LIU Y T, et al. CuS nanosheet-induced local hot spots on g-C3N4 boost photocatalytic hydrogen evolution[J]. Int J Hydrog Energy, 2023, 48(16): 6346-6357.

    [46] [46] WANG X Z, HE Y R, HU Y W, et al. Photothermal-conversion-enhanced photocatalytic activity of flower-like CuS superparticles under solar light irradiation[J]. Sol Energy, 2018, 170: 586-593.

    [47] [47] QIU P X, CHENG Z W, XUE N X, et al. The synergistic effect in metal-free graphene oxide coupled graphitic carbon nitride/light/peroxymonosulfate system: Photothermal effect and catalyst stability[J]. Carbon, 2021, 178: 81-91.

    [48] [48] FENG R Z, GUO M N, YANG Z Q, et al. 0D/2D Bi2MoO6 quantum dots/rGO heterojunction boosting full solar spectrum-driven photothermal catalytic CO2 reduction to solar fuels[J]. Carbon, 2024, 224: 119079.

    [49] [49] HU L Y, SUN W Y, TANG Y Y, et al. Photothermal effect enhancing graphene quantum dots/semiconducting polymer/nanozyme-mediated cancer catalytic therapy[J]. Carbon, 2021, 176: 148-156.

    [50] [50] LU J L, SHI Y X, CHEN Z Z, et al. Photothermal effect of carbon dots for boosted photothermal-assisted photocatalytic water/seawater splitting into hydrogen[J]. Chem Eng J, 2023, 453: 139834.

    [51] [51] ZHANG J H, LIU J C, WANG X Y, et al. Construction of Z-scheme tungsten trioxide nanosheets-nitrogen-doped carbon dots composites for the enhanced photothermal synergistic catalytic oxidation of cyclohexane[J]. Appl Catal B Environ, 2019, 259: 118063.

    [52] [52] HOU C, ZOU S Y, GAO J Y, et al. High-performance photocatalytic degradation of aromatic compounds using Co-MOF-74/ZnIn2S4/CNF aerogels with enhanced charge separation and photothermal synergy[J]. J Clean Prod, 2024, 485: 144393.

    [53] [53] NAIK G V, SHALAEV V M, BOLTASSEVA A. Alternative plasmonic materials: Beyond gold and silver[J]. Adv Mater, 2013, 25(24): 3264-3294.

    [54] [54] MATTOX T M, YE X C, MANTHIRAM K, et al. Chemical control of plasmons in metal chalcogenide and metal oxide nanostructures[J]. Adv Mater, 2015, 27(38): 5830-5837.

    [55] [55] C L, TIAN Q W, YANG S P. Recent advances in the rational design of copper chalcogenide to enhance the photothermal conversion efficiency for the photothermal ablation of cancer cells[J]. RSC Adv, 2017, 7(60): 37887-37897.

    [56] [56] N R, SKRIPKA A, BESTEIRO L V, et al. Highly efficient copper sulfide-based near-infrared photothermal agents: Exploring the limits of macroscopic heat conversion[J]. Small, 2018, 14(49): e1803282.

    [58] [58] Y, LI C X, ZOU X, et al. Super-hydrophobic graphene-based high elastic sponge with superior photothermal effect for efficient cleaning of oil contamination[J]. Chem Eng J, 2023, 476: 146317.

    [59] [59] Y, QIN L, YI H, et al. Carbonaceous materials-based photothermal process in water treatment: From originals to frontier applications[J]. Small, 2024, 20(5): e2305579.

    [60] [60] G Y, CHENG S T, CHEN B B, et al. Graphene infrared radiation management targeting photothermal conversion for electric-energy-free crude oil collection[J]. J Am Chem Soc, 2022, 144(34): 15562-15568.

    [61] [61] Q, HUANG J, ZHAO F F, et al. Photothermal effect of carbon quantum dots enhanced photoelectrochemical water splitting of hematite photoanodes[J]. J Mater Chem A, 2020, 8(30): 14915-14920.

    [62] [62] EBI A, AKHAVAN O, LEE B K, et al. Supercritical water in top-down formation of tunable-sized graphene quantum dots applicable in effective photothermal treatments of tissues[J]. Carbon, 2018, 130: 267-272.

    [63] [63] H J, LI C W, QIAN Y, et al. Magnetic-induced graphene quantum dots for imaging-guided photothermal therapy in the second near-infrared window[J]. Biomaterials, 2020, 232: 119700.

    [64] [64] G P, MEI H, ZHAO Y, et al. Nature-inspired 3D spiral grass structured graphene quantum dots/MXene nanohybrids with exceptional photothermal-driven pseudo-capacitance improvement[J]. Adv Sci, 2022, 9(30): e2204086.

    [65] [65] X F, WU H Z, SHI X J, et al. Polyoxometalate-based frameworks for photocatalysis and photothermal catalysis[J]. Nanoscale, 2023, 15(21): 9242-9255.

    [66] [66] WANG D C, ZHENG Y J, ZHAO H, et al. Core-shell -SiC@PPCN heterojunction for promoting photo-thermo catalytic hydrogen production[J]. ACS Catal, 2023, 13(15): 10104-10114.

    [67] [67] LI Y F, ZHANG Q P, CHONG Y N, et al. Efficient photothermal catalytic oxidation enabled by three-dimensional nanochannel substrates[J]. Environ Sci Technol, 2024, 58(11): 5153-5161.

    [68] [68] QI K, TAN G Q, LU Z H, et al. The temperature-controlled optimization of g-C3N4 structure significantly enhances the efficiency of photothermal catalytic NO removal[J]. J Mater Chem A, 2024, 12(11): 6539-6548.

    [69] [69] LU Y, WANG H J, YU P F, et al. Isolated Ni single atoms in nitrogen doped ultrathin porous carbon templated from porous g-C3N4 for high-performance CO2 reduction[J]. Nano Energy, 2020, 77: 105158.

    [71] [71] HU X C, CHEN X W, ZHANG X Y, et al.In situconstruction of interface with photothermal and mutual catalytic effect for efficient solar-driven reversible hydrogen storage of MgH2[J]. Adv Sci, 2024, 11(22): e2400274.

    [72] [72] CHEN H F, ZHU Y W, WU J, et al. Cu-doped ZnCdS-based photocatalyst for efficient photocatalytic hydrogen production by photothermal assistance[J]. Case Stud Therm Eng, 2024, 61: 104970.

    [73] [73] LI H, TANG Y, YAN W, et al. Vacancy-enhanced photothermal activation for CO2 methanation on Ni/SrTiO3 catalysts[J]. Appl Catal B-Environ, 2024, 357: 124346.

    [74] [74] BAFFOU G, QUIDANT R, GIRARD C. Heat generation in plasmonic nanostructures: Influence of morphology[J]. Appl Phys Lett, 2009, 94(15): 153109.

    [75] [75] CHEN H J, SHAO L, MING T, et al. Understanding the photothermal conversion efficiency of gold nanocrystals[J]. Small, 2010, 6(20): 2272-2280.

    [77] [77] CAI H R, WANG B, XIONG L F, et al. Orienting the charge transfer path of type-II heterojunction for photocatalytic hydrogen evolution[J]. Appl Catal B Environ, 2019, 256: 117853.

    [78] [78] QIN H J, ZHANG W J, ZHAO S S, et al. Design of CoN/ZIS heterojunction with yolk-shell structure for impressive photocatalytic H2 evolution promoted by the photothermal effect[J]. Chem Eng J, 2024, 489: 151213.

    [79] [79] ZHANG D F, ZHANG D, ZHAO F P, et al. Synergistic enhancement of photocatalytic hydrogen evolution in ZnIn2S4/CuWO4viaan S-scheme heterojunction and the photothermal effect[J]. J Mater Chem A, 2024, 12(48): 33546-33558.

    [80] [80] YANG X R, CHEN Z, ZHAO W, et al. Construction of porous-hydrangea BiOBr/BiOI n-n heterojunction with enhanced photodegradation of tetracycline hydrochloride under visible light[J]. J Alloys Compd, 2021, 864: 158784.

    [81] [81] WANG Z M, YUE X Y, XIANG Q J. MOFs-based S-scheme heterojunction photocatalysts[J]. Coord Chem Rev, 2024, 504: 215674.

    [82] [82] SUN Y T, XIONG R Z, KE X X, et al. Multi-hierarchical CuS/SnIn4S8 S-scheme heterojunction for superior photothermal-assisted photocatalytic hydrogen production[J]. Sep Purif Technol, 2024, 345: 127253.

    [83] [83] KONG Z S, DONG J X, YU J H, et al. Photothermal-enhanced magnetic Cd0.9Zn0.1S/CoB Schottky heterojunction toward photocatalytic hydrogen evolution[J]. Chem Eng J, 2024, 496: 153960.

    [84] [84] TANG H B, CHEN C J, HUANG Z L, et al. Plasmonic hot electrons for sensing, photodetection, and solar energy applications: A perspective[J]. J Chem Phys, 2020, 152(22): 220901.

    [85] [85] WANG S H, ZHANG D K, WANG W, et al. Grave-to-cradle upcycling of Ni from electroplating wastewater to photothermal CO2 catalysis[J]. Nat Commun, 2022, 13(1): 5305.

    [86] [86] LI Y G, BAI X H, YUAN D C, et al. General heterostructure strategy of photothermal materials for scalable solar-heating hydrogen production without the consumption of artificial energy[J]. Nat Commun, 2022, 13(1): 776.

    [87] [87] LIN Y X, JIA Y T, ALVA G, et al. Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage[J]. Renew Sustain Energy Rev, 2018, 82: 2730-2742.

    [88] [88] ZENG W G, YE X Y, DONG Y C, et al. MXene for photocatalysis and photothermal conversion: Synthesis, physicochemical properties, and applications[J]. Coord Chem Rev, 2024, 508: 215753.

    [89] [89] FAN X Q, LIU L, JIN X, et al. MXene Ti3C2Tx for phase change composite with superior photothermal storage capability[J]. J Mater Chem A, 2019, 7(23): 14319-14327.

    Tools

    Get Citation

    Copy Citation Text

    LEI Wanying, DU Yi, YANG Xinxin, TAN Ziqiang, GAO Zhi, LI Shisheng, ZHANG Xinshu. Mechanism, Materials and Modification Strategies of Photothermal Catalysis[J]. Journal of the Chinese Ceramic Society, 2025, 53(5): 1298

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 3, 2025

    Accepted: May. 29, 2025

    Published Online: May. 29, 2025

    The Author Email:

    DOI:10.14062/j.issn.0454-5648.20250007

    Topics