Journal of the Chinese Ceramic Society, Volume. 53, Issue 5, 1298(2025)
Mechanism, Materials and Modification Strategies of Photothermal Catalysis
[1] [1] HAYAT A, AJMAL Z, ALZAHRANI A Y A, et al. The photocatalytic H2O2 production: Design strategies, photocatalyst advancements, environmental applications and future prospects[J]. Coord Chem Rev, 2025, 522: 216218.
[2] [2] XUE S X, ZHOU T, WU P, et al. Ni0.85Se@CoFe LDH heterostructure nanosheet arrays on Ni foam as efficient electrocatalysts for enhanced oxygen evolution[J]. Int J Hydrog Energy, 2024, 51: 1349-1359.
[3] [3] JIN H G, ZHAO P C, QIAN Y Y, et al. Metal-organic frameworks for organic transformations by photocatalysis and photothermal catalysis[J]. Chem Soc Rev, 2024, 53(18): 9378-9418.
[5] [5] YANG X R, CHEN Z, ZHAO W, et al. Recent advances in photodegradation of antibiotic residues in water[J]. Chem Eng J, 2021, 405: 126806.
[6] [6] ARAMENDIA E, BROCKWAY P.Wind power and solar photovoltaics found to have higher energy returns than fossil fuels[J]. Nat Energy, 2024, 9: 775-776.
[7] [7] HASAN A, ALAZZAM A, ABU-NADA E. Direct absorption solar collectors: Fundamentals, modeling approaches, design and operating parameters, advances, knowledge gaps, and future prospects[J]. Prog Energy Combust Sci, 2024, 103: 101160.
[10] [10] XIE B Q, HU D, KUMAR P, et al. Heterogeneous catalysisvialight-heat dual activation: A path to the breakthrough in C1 chemistry[J]. Joule, 2024, 8(2): 312-333.
[11] [11] SONG C Q, WANG Z H, YIN Z, et al. Principles and applications of photothermal catalysis[J]. Chem Catal, 2022, 2(1): 52-83.
[12] [12] LINIC S, CHRISTOPHER P, INGRAM D B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy[J]. Nat Mater, 2011, 10(12): 911-921.
[13] [13] CORTS E, GRZESCHIK R, MAIER S A, et al. Experimental characterization techniques for plasmon-assisted chemistry[J]. Nat Rev Chem, 2022, 6(4): 259-274.
[14] [14] GOVOROV A O, ZHANG H, DEMIR H V, et al. Photogeneration of hot plasmonic electrons with metal nanocrystals: Quantum description and potential applications[J]. Nano Today, 2014, 9(1): 85-101.
[15] [15] ZHAO B H, ZHANG B. Electrochemistry-inspired design of thermocatalysts[J]. Nat Catal, 2024, 7: 229-230.
[16] [16] TAKATA T, JIANG J Z, SAKATA Y, et al. Photocatalytic water splitting with a quantum efficiency of almost unity[J]. Nature, 2020, 581(7809): 411-414.
[17] [17] NG M, JOVIC V, WATERHOUSE G I N, et al. Recent progress in photothermal catalyst design for methanol production[J]. Emergent Mater, 2023, 6(4): 1097-1115.
[18] [18] ZHOU L N, SWEARER D F, ZHANG C, et al. Quantifying hot carrier and thermal contributions in plasmonic photocatalysis[J]. Science, 2018, 362(6410): 69-72.
[19] [19] GHOUSSOUB M, XIA M K, DUCHESNE P N, et al. Principles of photothermal gas-phase heterogeneous CO2 catalysis[J]. Energy Environ Sci, 2019, 12(4): 1122-1142.
[20] [20] MENG X G, LIU L Q, OUYANG S X, et al. Nanometals for solar-to-chemical energy conversion: From semiconductor-based photocatalysis to plasmon-mediated photocatalysis and photo-thermocatalysis[J]. Adv Mater, 2016, 28(32): 6781-6803.
[21] [21] WANG Z Q, YANG Z Q, KADIROVA Z C, et al. Photothermal functional material and structure for photothermal catalytic CO2 reduction: Recent advance, application and prospect[J]. Coord Chem Rev, 2022, 473: 214794.
[22] [22] ZHANG J Q, CHEN H J, DUAN X G, et al. Photothermal catalysis: From fundamentals to practical applications[J]. Mater Today, 2023, 68: 234-253.
[23] [23] SARINA S, ZHU H Y, XIAO Q, et al. Viable photocatalysts under solar-spectrum irradiation: Nonplasmonic metal nanoparticles[J]. Angew Chem Int Ed, 2014, 53(11): 2935-2940.
[24] [24] YEN C W, EL-SAYED M A. Plasmonic field effect on the hexacyanoferrate (III)-thiosulfate electron transfer catalytic reaction on gold nanoparticles: Electromagnetic or thermal?[J]. J Phys Chem C, 2009, 113(45): 19585-19590.
[25] [25] WANG C L, ASTRUC D. Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion[J]. Chem Soc Rev, 2014, 43(20): 7188-7216.
[26] [26] LINIC S, ASLAM U, BOERIGTER C, et al. Photochemical transformations on plasmonic metal nanoparticles[J]. Nat Mater, 2015, 14(6): 567-576.
[27] [27] BISOYI H K, URBAS A M, LI Q. Soft materials driven by photothermal effect and their applications[J]. Adv Opt Mater, 2018, 6(15): 1800458.
[28] [28] WANG J, LI Y Y, DENG L, et al. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles[J]. Adv Mater, 2017, 29(3): 1603730.
[29] [29] FAN Q, WU L, LIANG Y, et al. The role of micro-nano pores in interfacial solar evaporation systems-A review[J]. Appl Energy, 2021, 292: 116871.
[30] [30] YANG J L, PANG Y S, HUANG W X, et al. Functionalized graphene enables highly efficient solar thermal steam generation[J]. ACS Nano, 2017, 11(6): 5510-5518.
[31] [31] SCHPPI R, RUTZ D, DHLER F, et al. Drop-in fuels from sunlight and air[J]. Nature, 2022, 601(7891): 63-68.
[32] [32] CAI M J, WU Z Y, LI Z, et al. Greenhouse-inspired supra-photothermal CO2 catalysis[J]. Nat Energy, 2021, 6: 807-814.
[33] [33] KANG L L, LIU X Y, WANG A Q, et al. Photo-thermo catalytic oxidation over a TiO2-WO3-supported platinum catalyst[J]. Angew Chem Int Ed, 2020, 59(31): 12909-12916.
[34] [34] LI X J, LIN J K, LI J Q, et al. Temperature-induced variations in photocatalyst properties and photocatalytic hydrogen evolution: Differences in UV, visible, and infrared radiation[J]. ACS Sustainable Chem Eng, 2021, 9(21): 7277-7285.
[35] [35] ZHU L L, GAO M M, PEH C K N, et al. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications[J]. Mater Horiz, 2018, 5(3): 323-343.
[36] [36] ZHU S Y, XU S, GUO Y J, et al. Defect damping-enhanced plasmonic photothermal conversion[J]. ACS Nano, 2023, 17(11): 10300-10312.
[37] [37] LV H H, MACHARIA D K, LIU Z X, et al. Au-loaded ZIF-8 derived porous carbon with improved photothermal catalysis ability from interfacial heating instead of hot-electrons[J]. Chem Eng J, 2024, 482: 148963.
[38] [38] GOVOROV A O, RICHARDSON H H. Generating heat with metal nanoparticles[J]. Nano Today, 2007, 2(1): 30-38.
[39] [39] KONG W F, XING Z P, FANG B, et al. Plasmon Ag/Na-doped defective graphite carbon nitride/NiFe layered double hydroxides Z-scheme heterojunctions toward optimized photothermal-photocatalytic- Fenton performance[J]. Appl Catal B Environ, 2022, 304: 120969.
[40] [40] LI G H, ZHANG M, CHEN J, et al. Combined effects of Pt nanoparticles and oxygen vacancies to promote photothermal catalytic degradation of toluene[J]. J Hazard Mater, 2023, 449: 131041.
[41] [41] YU L Q, GUO R T, XIA C, et al. Bismuth-metal and carbon quantum dot Co-doped NiAl-LDH heterojunctions for promoting the photothermal catalytic reduction of CO2[J]. Small, 2025, 21(5): 2409901.
[42] [42] WANG Z, YANG C Y, LIN T Q, et al. Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium- reduced black titania[J]. Energy Environ Sci, 2013, 6(10): 3007-3014.
[43] [43] ZHANG M, LI G H, LI Q, et al. In situ construction of manganese oxide photothermocatalysts for the deep removal of toluene by highly utilizing sunlight energy[J]. Environ Sci Technol, 2023, 57(10): 4286-4297.
[44] [44] CHEN Z Z, YAN Y J, SUN K Q, et al. Plasmonic coupling-boosted photothermal composite photocatalyst for achieving near-infrared photocatalytic hydrogen production[J]. J Colloid Interface Sci, 2024, 661: 12-22.
[45] [45] U H C, LIU Y T, et al. CuS nanosheet-induced local hot spots on g-C3N4 boost photocatalytic hydrogen evolution[J]. Int J Hydrog Energy, 2023, 48(16): 6346-6357.
[46] [46] WANG X Z, HE Y R, HU Y W, et al. Photothermal-conversion-enhanced photocatalytic activity of flower-like CuS superparticles under solar light irradiation[J]. Sol Energy, 2018, 170: 586-593.
[47] [47] QIU P X, CHENG Z W, XUE N X, et al. The synergistic effect in metal-free graphene oxide coupled graphitic carbon nitride/light/peroxymonosulfate system: Photothermal effect and catalyst stability[J]. Carbon, 2021, 178: 81-91.
[48] [48] FENG R Z, GUO M N, YANG Z Q, et al. 0D/2D Bi2MoO6 quantum dots/rGO heterojunction boosting full solar spectrum-driven photothermal catalytic CO2 reduction to solar fuels[J]. Carbon, 2024, 224: 119079.
[49] [49] HU L Y, SUN W Y, TANG Y Y, et al. Photothermal effect enhancing graphene quantum dots/semiconducting polymer/nanozyme-mediated cancer catalytic therapy[J]. Carbon, 2021, 176: 148-156.
[50] [50] LU J L, SHI Y X, CHEN Z Z, et al. Photothermal effect of carbon dots for boosted photothermal-assisted photocatalytic water/seawater splitting into hydrogen[J]. Chem Eng J, 2023, 453: 139834.
[51] [51] ZHANG J H, LIU J C, WANG X Y, et al. Construction of Z-scheme tungsten trioxide nanosheets-nitrogen-doped carbon dots composites for the enhanced photothermal synergistic catalytic oxidation of cyclohexane[J]. Appl Catal B Environ, 2019, 259: 118063.
[52] [52] HOU C, ZOU S Y, GAO J Y, et al. High-performance photocatalytic degradation of aromatic compounds using Co-MOF-74/ZnIn2S4/CNF aerogels with enhanced charge separation and photothermal synergy[J]. J Clean Prod, 2024, 485: 144393.
[53] [53] NAIK G V, SHALAEV V M, BOLTASSEVA A. Alternative plasmonic materials: Beyond gold and silver[J]. Adv Mater, 2013, 25(24): 3264-3294.
[54] [54] MATTOX T M, YE X C, MANTHIRAM K, et al. Chemical control of plasmons in metal chalcogenide and metal oxide nanostructures[J]. Adv Mater, 2015, 27(38): 5830-5837.
[55] [55] C L, TIAN Q W, YANG S P. Recent advances in the rational design of copper chalcogenide to enhance the photothermal conversion efficiency for the photothermal ablation of cancer cells[J]. RSC Adv, 2017, 7(60): 37887-37897.
[56] [56] N R, SKRIPKA A, BESTEIRO L V, et al. Highly efficient copper sulfide-based near-infrared photothermal agents: Exploring the limits of macroscopic heat conversion[J]. Small, 2018, 14(49): e1803282.
[58] [58] Y, LI C X, ZOU X, et al. Super-hydrophobic graphene-based high elastic sponge with superior photothermal effect for efficient cleaning of oil contamination[J]. Chem Eng J, 2023, 476: 146317.
[59] [59] Y, QIN L, YI H, et al. Carbonaceous materials-based photothermal process in water treatment: From originals to frontier applications[J]. Small, 2024, 20(5): e2305579.
[60] [60] G Y, CHENG S T, CHEN B B, et al. Graphene infrared radiation management targeting photothermal conversion for electric-energy-free crude oil collection[J]. J Am Chem Soc, 2022, 144(34): 15562-15568.
[61] [61] Q, HUANG J, ZHAO F F, et al. Photothermal effect of carbon quantum dots enhanced photoelectrochemical water splitting of hematite photoanodes[J]. J Mater Chem A, 2020, 8(30): 14915-14920.
[62] [62] EBI A, AKHAVAN O, LEE B K, et al. Supercritical water in top-down formation of tunable-sized graphene quantum dots applicable in effective photothermal treatments of tissues[J]. Carbon, 2018, 130: 267-272.
[63] [63] H J, LI C W, QIAN Y, et al. Magnetic-induced graphene quantum dots for imaging-guided photothermal therapy in the second near-infrared window[J]. Biomaterials, 2020, 232: 119700.
[64] [64] G P, MEI H, ZHAO Y, et al. Nature-inspired 3D spiral grass structured graphene quantum dots/MXene nanohybrids with exceptional photothermal-driven pseudo-capacitance improvement[J]. Adv Sci, 2022, 9(30): e2204086.
[65] [65] X F, WU H Z, SHI X J, et al. Polyoxometalate-based frameworks for photocatalysis and photothermal catalysis[J]. Nanoscale, 2023, 15(21): 9242-9255.
[66] [66] WANG D C, ZHENG Y J, ZHAO H, et al. Core-shell -SiC@PPCN heterojunction for promoting photo-thermo catalytic hydrogen production[J]. ACS Catal, 2023, 13(15): 10104-10114.
[67] [67] LI Y F, ZHANG Q P, CHONG Y N, et al. Efficient photothermal catalytic oxidation enabled by three-dimensional nanochannel substrates[J]. Environ Sci Technol, 2024, 58(11): 5153-5161.
[68] [68] QI K, TAN G Q, LU Z H, et al. The temperature-controlled optimization of g-C3N4 structure significantly enhances the efficiency of photothermal catalytic NO removal[J]. J Mater Chem A, 2024, 12(11): 6539-6548.
[69] [69] LU Y, WANG H J, YU P F, et al. Isolated Ni single atoms in nitrogen doped ultrathin porous carbon templated from porous g-C3N4 for high-performance CO2 reduction[J]. Nano Energy, 2020, 77: 105158.
[71] [71] HU X C, CHEN X W, ZHANG X Y, et al.In situconstruction of interface with photothermal and mutual catalytic effect for efficient solar-driven reversible hydrogen storage of MgH2[J]. Adv Sci, 2024, 11(22): e2400274.
[72] [72] CHEN H F, ZHU Y W, WU J, et al. Cu-doped ZnCdS-based photocatalyst for efficient photocatalytic hydrogen production by photothermal assistance[J]. Case Stud Therm Eng, 2024, 61: 104970.
[73] [73] LI H, TANG Y, YAN W, et al. Vacancy-enhanced photothermal activation for CO2 methanation on Ni/SrTiO3 catalysts[J]. Appl Catal B-Environ, 2024, 357: 124346.
[74] [74] BAFFOU G, QUIDANT R, GIRARD C. Heat generation in plasmonic nanostructures: Influence of morphology[J]. Appl Phys Lett, 2009, 94(15): 153109.
[75] [75] CHEN H J, SHAO L, MING T, et al. Understanding the photothermal conversion efficiency of gold nanocrystals[J]. Small, 2010, 6(20): 2272-2280.
[77] [77] CAI H R, WANG B, XIONG L F, et al. Orienting the charge transfer path of type-II heterojunction for photocatalytic hydrogen evolution[J]. Appl Catal B Environ, 2019, 256: 117853.
[78] [78] QIN H J, ZHANG W J, ZHAO S S, et al. Design of CoN/ZIS heterojunction with yolk-shell structure for impressive photocatalytic H2 evolution promoted by the photothermal effect[J]. Chem Eng J, 2024, 489: 151213.
[79] [79] ZHANG D F, ZHANG D, ZHAO F P, et al. Synergistic enhancement of photocatalytic hydrogen evolution in ZnIn2S4/CuWO4viaan S-scheme heterojunction and the photothermal effect[J]. J Mater Chem A, 2024, 12(48): 33546-33558.
[80] [80] YANG X R, CHEN Z, ZHAO W, et al. Construction of porous-hydrangea BiOBr/BiOI n-n heterojunction with enhanced photodegradation of tetracycline hydrochloride under visible light[J]. J Alloys Compd, 2021, 864: 158784.
[81] [81] WANG Z M, YUE X Y, XIANG Q J. MOFs-based S-scheme heterojunction photocatalysts[J]. Coord Chem Rev, 2024, 504: 215674.
[82] [82] SUN Y T, XIONG R Z, KE X X, et al. Multi-hierarchical CuS/SnIn4S8 S-scheme heterojunction for superior photothermal-assisted photocatalytic hydrogen production[J]. Sep Purif Technol, 2024, 345: 127253.
[83] [83] KONG Z S, DONG J X, YU J H, et al. Photothermal-enhanced magnetic Cd0.9Zn0.1S/CoB Schottky heterojunction toward photocatalytic hydrogen evolution[J]. Chem Eng J, 2024, 496: 153960.
[84] [84] TANG H B, CHEN C J, HUANG Z L, et al. Plasmonic hot electrons for sensing, photodetection, and solar energy applications: A perspective[J]. J Chem Phys, 2020, 152(22): 220901.
[85] [85] WANG S H, ZHANG D K, WANG W, et al. Grave-to-cradle upcycling of Ni from electroplating wastewater to photothermal CO2 catalysis[J]. Nat Commun, 2022, 13(1): 5305.
[86] [86] LI Y G, BAI X H, YUAN D C, et al. General heterostructure strategy of photothermal materials for scalable solar-heating hydrogen production without the consumption of artificial energy[J]. Nat Commun, 2022, 13(1): 776.
[87] [87] LIN Y X, JIA Y T, ALVA G, et al. Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage[J]. Renew Sustain Energy Rev, 2018, 82: 2730-2742.
[88] [88] ZENG W G, YE X Y, DONG Y C, et al. MXene for photocatalysis and photothermal conversion: Synthesis, physicochemical properties, and applications[J]. Coord Chem Rev, 2024, 508: 215753.
[89] [89] FAN X Q, LIU L, JIN X, et al. MXene Ti3C2Tx for phase change composite with superior photothermal storage capability[J]. J Mater Chem A, 2019, 7(23): 14319-14327.
Get Citation
Copy Citation Text
LEI Wanying, DU Yi, YANG Xinxin, TAN Ziqiang, GAO Zhi, LI Shisheng, ZHANG Xinshu. Mechanism, Materials and Modification Strategies of Photothermal Catalysis[J]. Journal of the Chinese Ceramic Society, 2025, 53(5): 1298
Category:
Received: Jan. 3, 2025
Accepted: May. 29, 2025
Published Online: May. 29, 2025
The Author Email: