Acta Laser Biology Sinica, Volume. 32, Issue 1, 43(2023)
Familial Identification of Wheat Pheophorbide a Oxygenase Gene and Its Characteristic Analysis in Response to Aging
[3] [3] XIE Q, LIANG Y, ZHANG J, et al. Involvement of a putative bipartite transit peptide in targeting rice pheophorbide a oxygenase into chloroplasts for chlorophyll degradation during leaf senescence[J]. Journal of Genetics and Genomics, 2016, 43(3): 145-154.
[5] [5] Hortensteiner S. Update on the biochemistry of chlorophyll breakdown[J]. Plant Molecular Biology, 2013, 82(6): 505-517.
[6] [6] Hortensteiner S. Chlorophyll degradation during senescence[J]. Annual Review of Plant Biology, 2006, 57(1): 55-77.
[7] [7] Schelbert S, Aubry S, Burla B, et al. Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis[J]. The Plant Cell, 2009, 21(3): 767-785.
[8] [8] Tang C, Wang X, Duan X, et al. Functions of the lethal leaf-spot 1 gene in wheat cell death and disease tolerance to Puccinia striiformis[J]. Journal of Experimental Botany, 2013, 64(10): 2955-2969.
[9] [9] Reinbothe S, Bartsch S, Rossig C, et al. A protochlorophyllide (pchlide) a oxygenase for plant viability[J]. Frontiers in Plant Science, 2019, 10: 593.
[10] [10] Gray J, Close P S, Briggs S P, et al. A novel suppressor of cell death in plants encoded by the Lls1 gene of maize[J]. Cell, 1997, 89(1): 25-31.
[11] [11] Pruzinská A, Tanner G, Anders I, et al. Chlorophyll breakdown: pheophorbide a oxygenase is a Rieske-type iron-sulfur protein, encoded by the accelerated cell death 1 gene[J]. Proceedings of the National Academy of Sciences, 2003, 100(25): 15259-15264.
[12] [12] Gomez-Lobato M E, Civello P M, Martínez G A. Effects of ethylene, cytokinin and physical treatments on BoPaO gene expression of harvested broccoli[J]. Journal of the Science of Food and Agriculture, 2012, 92(1): 151-158.
[13] [13] Chung D W, Pruzinská A, Hortensteiner S, et al. The role of pheophorbide a oxygenase expression and activity in the canola green seed problem[J]. Plant Physiology, 2006, 142(1): 88-97.
[14] [14] Jiang H, L M, Liang N, et al. Molecular cloning and function analysis of the stay green gene in rice[J]. The Plant Journal, 2007, 52(2): 197-209.
[15] [15] Rodoni S, Schellenberg M, Matile P. Chlorophyll breakdown in senescing barley leaves as correlated with phaeophorbidea oxygenase activity[J]. Journal of Plant Physiology, 1998, 152(2/3): 139-144.
[16] [16] Tang Y, Li M, Chen Y, et al. Knockdown of OsPaO and OsRCCR1 cause different plant death phenotypes in rice[J]. Journal of Plant Physiology, 2011, 168(16): 1952-1959.
[17] [17] Sakuraba Y, Schelbert S, Park S Y. STAY-GREEN and chlorophyll catabolic enzymes interact at light-harvesting complex II for chlorophyll detoxification during leaf senescence in Arabidopsis[J]. The Plant Cell, 2012, 24(2): 507-518.
[18] [18] Yates A D, Allen J, Amode R M, et al. Ensembl genomes 2022: an expanding genome resource for non-vertebrates[J]. Nucleic Acids Research, 2022, 50(D1): D996-D1003.
[19] [19] Mistry J, Chuguransky S, Williams L, et al. Pfam: the protein families database in 2021[J]. Nucleic Acids Research, 2021, 49(D1): D412-D419.
[20] [20] International Wheat Genome Sequencing Consortium (IWGSC). Shifting the limits in wheat research and breeding using a fully annotated reference genome[J]. Science, 2018, 361(6403): eaar7191.
[21] [21] Lu S, Wang J, Chitsaz F, et al. CDD/SPARCLE: the conserved domain database in 2020[J]. Nucleic Acids Research, 2020, 48(D1): D265-D268.
[22] [22] Chen C, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202.
[23] [23] Gasteiger E, Hoogland C, Gattiker A, et al. Protein identification and analysis tools on the ExPASy server[J]. The Proteomics Protocols Handbook, 2005: 571-607.
[24] [24] Chou K C, Shen H B. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization[J]. PLoS One, 2010, 5(6): e11335.
[25] [25] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870-1874.
[26] [26] Letunic I, Bork P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation[J]. Nucleic Acids Research, 2021, 49(W1): W293-W296.
[27] [27] Koonin E V. Orthologs, paralogs, and evolutionary genomics[J]. Annual Review of Genetics, 2005, 39(1): 309-338.
[28] [28] Bailey T L, Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers[J]. Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology, 1994, 2(1): 28-36.
[29] [29] Lescot M, Déhais P, Thijs G, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research, 2002, 30(1): 325-327.
[30] [30] International Wheat Genome Sequencing Consortium (IWGSC). A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome[J]. Science, 2014, 345(6194): 1251788.
[31] [31] Gregersen P L, Holm P B. Transcriptome analysis of senescence in the flag leaf of wheat (Triticum aestivum L.)[J]. Plant Biotechnology Journal, 2007, 5(1): 192-206.
[37] [37] Xiao H J, Liu K K, Li D W, et al. Cloning and characterization of the pepper CaPAO gene for defense responses to salt-induced leaf senescence[J]. BMC Biotechnology, 2015, 15(1): 1-12.
[39] [39] Pruzinská A, Tanner G, Aubry S, et al. Chlorophyll breakdown in senescent Arabidopsis leaves. Characterization of chlorophyll catabolites and of chlorophyll catabolic enzymes involved in the degreening reaction[J]. Plant Physiology, 2005, 139(1): 52-63.
[40] [40] Yang J, Worley E, Udvardi M. A NAP-AAO3 regulatory module promotes chlorophyll degradation via ABA biosynthesis in Arabidopsis leaves[J]. The Plant Cell, 2014, 26(12): 4862-4874.
[43] [43] Hauenstein M, Christ B, Das A, et al. A role for TIC55 as a hydroxylase of phyllobilins, the products of chlorophyll breakdown during plant senescence[J]. The Plant Cell, 2016, 28(10): 2510-2527.
[44] [44] Chou M L, Liao W Y, Wei W C, et al. The direct involvement of dark-induced Tic55 protein in chlorophyll catabolism and its indirect role in the MYB108-NAC signaling pathway during leaf senescence in Arabidopsis thaliana[J]. International Journal of Molecular Sciences, 2018, 19(7): 1854.
[45] [45] Bartsch S, Monnet J, Selbach K, et al. Three thioredoxin targets in the inner envelope membrane of chloroplasts function in protein import and chlorophyll metabolism[J]. Proceedings of the National Academy of Sciences, 2008, 105(12): 4933-4938.
Get Citation
Copy Citation Text
YAN Rongyue, HAO Huifang, JIN Xiujuan, GUO Feng, XU Chengjie, TANG Xiaosha, WANG Shuguang, FAN Hua, SUN Daizhen. Familial Identification of Wheat Pheophorbide a Oxygenase Gene and Its Characteristic Analysis in Response to Aging[J]. Acta Laser Biology Sinica, 2023, 32(1): 43
Category:
Received: Oct. 26, 2022
Accepted: --
Published Online: Mar. 13, 2023
The Author Email: Hua FAN (jeanafan@163.com)