Photonic Sensors, Volume. 6, Issue 4, 328(2016)
Alumina Ceramic Based High-Temperature Performance of Wireless Passive Pressure Sensor
[1] [1] W. J. Pulliam, P. M. Russler, and R. S. Fielder, “High-temperature high-bandwidth fiber optic MEMS pressure-sensor technology for turbine engine component testing,” SPIE, 2002, 4578: 229–238.
[2] [2] R. W. Johnson, J. L. Evans, P. Jacobsen, J. R. Thompson, and M. Christopher, “The changing automotive environment: High-temperature electronics,” IEEE Transactions on Electronics Packaging Manufacturing, 2004, 27(3): 164–176.
[3] [3] C. V. Netten, “Design of a small personal air monitor and its application in aircraft,” Science of the Total Environment, 2009, 407(3): 1206–1210.
[4] [4] S. E. Zhu, M. K. Ghatkesar, C. Zhang, and G. C. A. M. Janssen, “Graphene based piezoresistive pressure sensor,” Applied Physics Letters, 2013, 102(16): 161904-1–161904-3.
[5] [5] G. Chitnis, T. Maleki, B. Samuels, L. B. Cantor, and B. Ziaie, “A minimally invasive implantable wireless pressure sensor for continuous IOP monitoring,” IEEE Transactions on Biomedical Engineering, 2013, 60(1): 250–256.
[6] [6] M. Narayanaswamy, R. J. Daniel, K. Sumangala, and C. A. Jeyasehar, “Computer aided modeling and diaphragm design approach for high sensitivity silicon-on-insulator pressure sensors,” Measurement, 2011, 44(10): 1924–1936.
[7] [7] S. Li, T. Liang, W. Wang, Y. Hong, T. Zheng, and J. Xiong, “A novel SOI pressure sensor for high temperature application,” Journal of Semiconductors, 2015, 36(1): 014014-1–14014-5.
[8] [8] T. H. Lee, S. Bhunia, and M. Mehregany, “Electromechanical computing at 500℃ with silicon carbide,” Science, 2010, 329(5997): 1316–1318.
[9] [9] D. A. Mills, D. Alexander, G. Subhash, and M. Spheplak, “Development of a sapphire optical pressure sensor for high-temperature applications,” SPIE, 2014, 9113: 91130H-1–91130H-15.
[10] [10] J. Xu, G. Pickrell, X. Wang, W. Peng, K. Cooper, and A. Wang, “A novel temperature-insensitive optical fiber pressure sensor for harsh environments,” IEEE Photonics Technology Letters, 2005, 17(4): 870–872.
[11] [11] C. M. Jewart, Q. Wang, J. Canning, D. Grobnic, S. J. Mihailov, and K. P. Chen, “Ultrafast femtosecond-laser-induced fiber Bragg gratings in air-hole microstructured fibers for high-temperature pressure sensing,” Optics Letters, 2010, 35(9): 1443–1445.
[12] [12] A. Binder, G. Bruckner, N. Schobernig, and D. Schmitt, “Wireless surface acoustic wave pressure and temperature sensor with unique identification based on LiNbO3,” IEEE Sensors Journal, 2013, 13(5): 1801–1805.
[13] [13] J. G. Rodriguez-Madrid, G. F. Iriarte, O. A. Williams, and F. Calle, “High precision pressure sensors based on SAW devices in the GHz range,” Sensors and Actuators A: Physical, 2013, 189(2): 364–369.
[14] [14] K. G. Ong, C. A. Grimes, C. L. Robbins, and R. S. Singh, “Design and application of a wireless, passive, resonant-circuit environmental monitoring sensor,” Sensors and Actuators A: Physical, 2001, 93(1): 33–43.
[15] [15] Q. Tan, C. Li, J. Xiong, P. Jia, W. Zhang, J. Liu, et al., “A high temperature capacitive pressure sensor based on alumina ceramic for in situ measurement at 600℃,” Sensors, 2014, 14(2): 2417–2430.
[16] [16] J. Xiong, C. Li, P. Jia, X. Chen, W. Zhang, J. Liu, et al., “An insertable passive LC pressure sensor based on an alumina ceramic for in situ pressure sensing in high-temperature environments,” Sensors, 2015, 15(9): 21844–21856.
Get Citation
Copy Citation Text
Bo WANG, Guozhu WU, Tao GUO, Qiulin TAN. Alumina Ceramic Based High-Temperature Performance of Wireless Passive Pressure Sensor[J]. Photonic Sensors, 2016, 6(4): 328
Category: Regular
Received: Jan. 11, 2016
Accepted: Jun. 2, 2016
Published Online: Oct. 21, 2016
The Author Email: WU Guozhu (pillar921@163.com)