Laser & Optoelectronics Progress, Volume. 60, Issue 2, 0215002(2023)

Identification of Sewage Microorganisms Using Attention Mechanism

Lei Xiao* and Zongmiao Lan
Author Affiliations
  • College of Automation, Guangdong Polytechnic Normal University, Guangzhou 510665, Guangdong, China
  • show less
    Figures & Tables(15)
    Images of micro-animals. (a) Rotifer; (b) Euplotes; (c) Peranema trichophonrum; (d) Vorticella; (e) Litonotus; (f) Nematode
    Data enhancement effect. (a) Original image; (b) flipping horizontally; (c) rotating 90°; (d) rotating 180°; (e) adding appropriate Gaussian noise
    Squeeze-and-Excitation Network
    Comparison images of VGG16 model before and after improvement
    Training process of improved VGG16 model based on transfer learning
    Accuracy change process on training set
    Accuracy change process on validation set
    Loss change process on training set
    Loss change process on validation set
    • Table 1. Comparison of number of parameters before and after model improvement

      View table

      Table 1. Comparison of number of parameters before and after model improvement

      ModelNumber of parameters
      Before improvement70305606
      After improvement14931334
    • Table 2. Comparison of classification performance before and after data augmentation

      View table

      Table 2. Comparison of classification performance before and after data augmentation

      DatasetAccuracy /%
      Original93.05
      Augmentation98.21
    • Table 3. Comparison of performance of each model

      View table

      Table 3. Comparison of performance of each model

      NetworkAccuracy /%Time /s
      VGG1696.53354
      T-VGG1697.2676
      T-SE-VGG16(uncut)96.5395
      T-SE-VGG1698.2170
    • Table 4. Precision of each model

      View table

      Table 4. Precision of each model

      Micro-animalT-SE-VGG16T-VGG16T-SE-VGG16 (uncut)VGG16
      Rotifer0.9760.9750.9760.990
      Euplotes0.9890.9470.9770.988
      Peranema trichophonrum0.9900.9790.9890.916
      Vorticella1.0000.9930.9860.986
      Litonotus0.9470.9580.8940.973
      Nematode1.0001.0000.9620.938
    • Table 5. Recall of each model

      View table

      Table 5. Recall of each model

      Micro-animalT-SE-VGG16T-VGG16T-SE-VGG16 (uncut)VGG16
      Rotifer0.9900.9850.9900.975
      Euplotes0.9780.9940.9560.911
      Peranema trichophonrum0.9750.9400.9150.990
      Vorticella0.9861.0001.0000.986
      Litonotus0.9930.9580.9930.986
      Nematode0.9630.9510.9380.926
    • Table 6. F1-score of each model

      View table

      Table 6. F1-score of each model

      Micro-animalT-SE-VGG16T-VGG16T-SE-VGG16 (uncut)VGG16
      Rotifer0.9830.9800.9830.982
      Euplotes0.9830.9750.9660.948
      Peranema trichophonrum0.9820.9590.9510.952
      Vorticella0.9930.9960.9930.986
      Litonotus0.9700.9580.9410.980
      Nematode0.9810.9750.9500.932
    Tools

    Get Citation

    Copy Citation Text

    Lei Xiao, Zongmiao Lan. Identification of Sewage Microorganisms Using Attention Mechanism[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0215002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Sep. 28, 2021

    Accepted: Nov. 8, 2021

    Published Online: Jan. 6, 2023

    The Author Email: Lei Xiao (2650782969@qq.com)

    DOI:10.3788/LOP212628

    Topics