Laser & Optoelectronics Progress, Volume. 52, Issue 7, 71602(2015)
Electronic Properties and Spectrum Redshift Effect of Rutile TiO2 Co-doped with Double Transition Metal Copper and Chromium
[1] [1] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38.
[2] [2] Legrini O, Oliveros E, Braun A M. Photochemical processes for water treatment[J]. J Chem Rev, 1993, 93(2) :671-698.
[3] [3] Tung H T, Quang V L, Thai H N, et al.. Performance of CdS/CdSe/ZnS quantum dot-sensitized TiO2 mesopores for solar cells[J]. Chin Opt Lett, 2013, 11(7): 072501.
[5] [5] Mazzer C, Ferreira L R, Regina J, et al.. Cyclodextrin production by Bacillus firmus strain 37 immobilized on inorganic matrices and alginate gel[J]. Biochemical Engineering Journal, 2008, 41(1): 79-86.
[6] [6] Zhang Xue, Li Yuping, Han Peide, et al.. Band gap properties and photocatalytic activities of TiO2/SiO2 multilayer film[J]. Acta Optica Sinica, 2012, 32(7): 0716001.
[7] [7] Chen Xiuqin, Zhang Yuejun, Zhan Jianyi. Research progress of visible light activity of TiO2 doped with nonmetal and its mechnism[J]. Sichuan Environment, 2010, 29(6):107-111.
[8] [8] Kato H, Kudo A. Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium[J]. J Phys Chem B, 2002, 106(19): 5029-5034.
[9] [9] Guan Luxiong, Li Jiayuan, Wang Ting, et al.. Photocatalysis of nanometer-sized TiO2 particles doped with Cu2+ and V5+[J]. J Cent South Univ (Science and Technology), 2006, 36(4): 731-735.
[10] [10] Hu Zhixue. Preparation and photocatalytic activity of Ag-Zn co-doped TiO2 nanoparticles[J]. Yunnan Chemical Technology, 2012, 39(6): 10-12.
[11] [11] Wu Guohao, Zheng Shukai, Liu Lei. First-principles study on Fe-S co-doped anatase TiO2[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(3): 852-858.
[12] [12] Feng Qing, Yue Yuanxia, Wang Yin, et al.. Study on optical and electronic properties of anatase TiO2 with Mn-N codoping[J]. Laser & Optoelectronics Progress, 2013, 50(6): 061601.
[13] [13] Gu Y H, Cai C Z, Feng Q, et al.. Spectrum redshift effect of anatase TiO2 codoped with nitrogen and first transition elements[J]. Chin Opt Lett, 2014, 12(9): 091602.
[14] [14] Xu Shun, Yang Pengfei, Du Baoshi, et al.. Progress in research on photocatalytic performance of doped-TiO2[J]. Chemical Research and Application, 2003, 15(2): 146-150.
[15] [15] Lu Ping, Yao Mingming, Zhang Ying, et al.. The effect of doping transition metal ion on photocatalysis of TiO2 and properity[J]. Photographic Science and Photochemistry, 2002, 20(3): 186-190.
[16] [16] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3876.
[17] [17] Burdett J K, Hughbanks T, Miller G, et al.. Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K[J]. J Am Chem Soc, 1987, 109(12): 3639-3646.
[18] [18] Zhang Zhiyu, Han Peide, Zhang Caili, et al.. Electronic structures and optical properties of Cu:MgF2 crystal[J]. Acta Phys Chim Sin, 2012, 28(2): 324-330.
Get Citation
Copy Citation Text
Zhang Juhua, Feng Qing, Zhou Qing, Yang Ying. Electronic Properties and Spectrum Redshift Effect of Rutile TiO2 Co-doped with Double Transition Metal Copper and Chromium[J]. Laser & Optoelectronics Progress, 2015, 52(7): 71602
Category: Materials
Received: Feb. 9, 2015
Accepted: --
Published Online: Jul. 6, 2015
The Author Email: Juhua Zhang (cswl03@cqnu.edu.cn)