Chinese Journal of Lasers, Volume. 51, Issue 1, 0101002(2024)

Laser Wakefield Electron Acceleration and Novel Radiation Sources (Invited)

Changhai Yu1, Zhiyong Qin1, Zhijun Zhang1, and Jiansheng Liu1,2、*
Author Affiliations
  • 1Department of Physics, Shanghai Normal University, Shanghai 200234, China
  • 2State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • show less
    References(114)

    [1] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 56, 219-221(1985).

    [2] Mourou G, Tajima T. More intense, shorter pulses[J]. Science, 331, 41-42(2011).

    [3] Krausz F, Brabec T, Schnürer M et al. Extreme nonlinear optics: exposing matter to a few periods of light[J]. Optics and Photonics News, 9, 46-51(1998).

    [4] Tajima T, Dawson J M. Laser electron accelerator[J]. Physical Review Letters, 43, 267-270(1979).

    [5] Esarey E, Schroeder C B, Leemans W P. Physics of laser-driven plasma-based electron accelerators[J]. Reviews of Modern Physics, 81, 1229-1285(2009).

    [6] Pukhov A. Three-dimensional simulations of ion acceleration from a foil irradiated by a short-pulse laser[J]. Physical Review Letters, 86, 3562-3565(2001).

    [7] Esirkepov T, Borghesi M, Bulanov S V et al. Highly efficient relativistic-ion generation in the laser-piston regime[J]. Physical Review Letters, 92, 175003(2004).

    [8] Yan X Q, Lin C, Sheng Z M et al. Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime[J]. Physical Review Letters, 100, 135003(2008).

    [9] Krausz F, Ivanov M. Attosecond physics[J]. Reviews of Modern Physics, 81, 163-234(2009).

    [10] Pukhov A. X-rays in a flash[J]. Nature Physics, 2, 439-440(2006).

    [11] Dromey B, Zepf M, Gopal A et al. High harmonic generation in the relativistic limit[J]. Nature Physics, 2, 456-459(2006).

    [12] Gordienko S, Pukhov A, Shorokhov O et al. Relativistic Doppler effect: universal spectra and zeptosecond pulses[J]. Physical Review Letters, 93, 115002(2004).

    [13] Corde S, Ta Phuoc K, Lambert G et al. Femtosecond X rays from laser-plasma accelerators[J]. Reviews of Modern Physics, 85, 1-48(2013).

    [14] Faure J, Glinec Y, Pukhov A et al. A laser-plasma accelerator producing monoenergetic electron beams[J]. Nature, 431, 541-544(2004).

    [15] Geddes C G R, Toth C, van Tilborg J et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding[J]. Nature, 431, 538-541(2004).

    [16] Mangles S P D, Murphy C D, Najmudin Z et al. Monoenergetic beams of relativistic electrons from intense laser-plasma interactions[J]. Nature, 431, 535-538(2004).

    [17] Gonsalves A J, Nakamura K, Daniels J et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide[J]. Physical Review Letters, 122, 084801(2019).

    [18] Wang W T, Li W T, Liu J S et al. High-brightness high-energy electron beams from a laser wakefield accelerator via energy chirp control[J]. Physical Review Letters, 117, 124801(2016).

    [19] Cipiccia S, Islam M R, Ersfeld B et al. Gamma-rays from harmonically resonant betatron oscillations in a plasma wake[J]. Nature Physics, 7, 867-871(2011).

    [20] Chen L M, Yan W C, Li D Z et al. Bright betatron X-ray radiation from a laser-driven-clustering gas target[J]. Scientific Reports, 3, 1912(2013).

    [21] Chen M, Luo J, Li F Y et al. Tunable synchrotron-like radiation from centimeter scale plasma channels[J]. Light: Science & Applications, 5, e16015(2016).

    [22] Yu C H, Liu J S, Wang W T et al. Enhanced betatron radiation by steering a laser-driven plasma wakefield with a tilted shock front[J]. Applied Physics Letters, 112, 133503(2018).

    [23] Phuoc K T, Corde S, Thaury C et al. All-optical compton gamma-ray source[J]. Nature Photonics, 6, 308-311(2012).

    [24] Yu C H, Qi R, Wang W T et al. Ultrahigh brilliance quasi-monochromatic MeV γ-rays based on self-synchronized all-optical Compton scattering[J]. Scientific Reports, 6, 29518(2016).

    [25] He Z H, Beaurepaire B, Nees J A et al. Capturing structural dynamics in crystalline silicon using chirped electrons from a laser wakefield accelerator[J]. Scientific Reports, 6, 36224(2016).

    [26] Joshi C. Plasma-based accelerators: then and now[J]. Plasma Physics and Controlled Fusion, 61, 104001(2019).

    [27] Bulanov S V, Pegoraro F, Pukhov A M et al. Transverse-wake wave breaking[J]. Physical Review Letters, 78, 4205-4208(1997).

    [28] Pukhov A, Meyer-ter-Vehn J. Laser wake field acceleration: the highly non-linear broken-wave regime[J]. Applied Physics B, 74, 355-361(2002).

    [29] Joshi C. Plasma accelerators[J]. Scientific American, 294, 40-47(2006).

    [30] Bulanov S, Naumova N, Pegoraro F et al. Particle injection into the wave acceleration phase due to nonlinear wake wave breaking[J]. Physical Review E, 58, R5257-R5260(1998).

    [31] Kneip S, Nagel S R, Martins S F et al. Near-GeV acceleration of electrons by a nonlinear plasma wave driven by a self-guided laser pulse[J]. Physical Review Letters, 103, 035002(2009).

    [32] Kostyukov I, Nerush E, Pukhov A et al. Electron self-injection in multidimensional relativistic-plasma wake fields[J]. Physical Review Letters, 103, 175003(2009).

    [33] Umstadter D, Chen S Y, Maksimchuk A et al. Nonlinear optics in relativistic plasmas and laser wake field acceleration of electrons[J]. Science, 273, 472-475(1996).

    [34] Thomas A G R, Murphy C D, Mangles S P D et al. Monoenergetic electronic beam production using dual collinear laser pulses[J]. Physical Review Letters, 100, 255002(2008).

    [35] Davoine X, Lefebvre E, Rechatin C et al. Cold optical injection producing monoenergetic, multi-GeV electron bunches[J]. Physical Review Letters, 102, 065001(2009).

    [36] Oz E, Deng S, Katsouleas T et al. Ionization-induced electron trapping in ultrarelativistic plasma wakes[J]. Physical Review Letters, 98, 084801(2007).

    [37] Pak A, Marsh K A, Martins S F et al. Injection and trapping of tunnel-ionized electrons into laser-produced wakes[J]. Physical Review Letters, 104, 025003(2010).

    [38] Clayton C E, Ralph J E, Albert F et al. Self-guided laser wakefield acceleration beyond 1 GeV using ionization-induced injection[J]. Physical Review Letters, 105, 105003(2010).

    [39] McGuffey C, Thomas A G R, Schumaker W et al. Ionization induced trapping in a laser wakefield accelerator[J]. Physical Review Letters, 104, 025004(2010).

    [40] Liu J S, Xia C Q, Wang W T et al. All-optical cascaded laser wakefield accelerator using ionization-induced injection[J]. Physical Review Letters, 107, 035001(2011).

    [41] Pollock B B, Clayton C E, Ralph J E et al. Demonstration of a narrow energy spread, ∼0.5 GeV electron beam from a two-stage laser wakefield accelerator[J]. Physical Review Letters, 107, 045001(2011).

    [42] Suk H, Barov N, Rosenzweig J B et al. Plasma electron trapping and acceleration in a plasma wake field using a density transition[J]. Physical Review Letters, 86, 1011-1014(2001).

    [43] Chien T Y, Chang C L, Lee C H et al. Spatially localized self-injection of electrons in a self-modulated laser-wakefield accelerator by using a laser-induced transient density ramp[J]. Physical Review Letters, 94, 115003(2005).

    [44] Buck A, Wenz J, Xu J et al. Shock-front injector for high-quality laser-plasma acceleration[J]. Physical Review Letters, 110, 185006(2013).

    [45] Rittershofer W, Schroeder C B, Esarey E et al. Tapered plasma channels to phase-lock accelerating and focusing forces in laser-plasma accelerators[J]. Physics of Plasmas, 17, 063104(2010).

    [46] Swanson K K, Tsai H E, Barber S K et al. Control of tunable, monoenergetic laser-plasma-accelerated electron beams using a shock-induced density downramp injector[J]. Physical Review Accelerators and Beams, 20, 051301(2017).

    [47] Ke L T, Yu C H, Feng K et al. Optimization of electron beams based on plasma-density modulation in a laser-driven wakefield accelerator[J]. Applied Sciences, 11, 2560(2021).

    [48] Froula D H, Clayton C E, Döppner T et al. Measurements of the critical power for self-injection of electrons in a laser wakefield accelerator[J]. Physical Review Letters, 103, 215006(2009).

    [49] Gonsalves A J, Nakamura K, Lin C et al. Tunable laser plasma accelerator based on longitudinal density tailoring[J]. Nature Physics, 7, 862-866(2011).

    [50] Corde S, Thaury C, Lifschitz A et al. Observation of longitudinal and transverse self-injections in laser-plasma accelerators[J]. Nature Communications, 4, 1501(2013).

    [51] Kuschel S, Schwab M B, Yeung M et al. Controlling the self-injection threshold in laser wakefield accelerators[J]. Physical Review Letters, 121, 154801(2018).

    [52] Bloom M S, Streeter M J V, Kneip S et al. Bright X-ray radiation from plasma bubbles in an evolving laser wakefield accelerator[J]. Physical Review Accelerators and Beams, 23, 061301(2020).

    [53] Faure J, Rechatin C, Norlin A et al. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses[J]. Nature, 444, 737-739(2006).

    [54] Rechatin C, Faure J, Ben-Ismail A et al. Controlling the phase-space volume of injected electrons in a laser-plasma accelerator[J]. Physical Review Letters, 102, 164801(2009).

    [55] Golovin G, Yan W C, Luo J et al. Electron trapping from interactions between laser-driven relativistic plasma waves[J]. Physical Review Letters, 121, 104801(2018).

    [56] Wenz J, Döpp A, Khrennikov K et al. Dual-energy electron beams from a compact laser-driven accelerator[J]. Nature Photonics, 13, 263-269(2019).

    [57] Mo M Z, Ali A, Fourmaux S et al. Quasimonoenergetic electron beams from laser wakefield acceleration in pure nitrogen[J]. Applied Physics Letters, 100, 074101(2012).

    [58] Mirzaie M, Li S, Zeng M et al. Demonstration of self-truncated ionization injection for GeV electron beams[J]. Scientific Reports, 5, 14659(2015).

    [59] Maier A R, Delbos N M, Eichner T et al. Decoding sources of energy variability in a laser-plasma accelerator[J]. Physical Review X, 10, 031039(2020).

    [60] Kirchen M, Jalas S, Messner P et al. Optimal beam loading in a laser-plasma accelerator[J]. Physical Review Letters, 126, 174801(2021).

    [61] Wan Y, Seemann O, Tata S et al. Direct observation of relativistic broken plasma waves[J]. Nature Physics, 18, 1186-1190(2022).

    [62] von der Leyen M W, Holloway J, Ma Y et al. Observation of monoenergetic electrons from two-pulse ionization injection in quasilinear laser wakefields[J]. Physical Review Letters, 130, 105002(2023).

    [63] Geddes C G R, Nakamura K, Plateau G R et al. Plasma-density-gradient injection of low absolute-momentum-spread electron bunches[J]. Physical Review Letters, 100, 215004(2008).

    [64] Schmid K, Buck A, Sears C M S et al. Density-transition based electron injector for laser driven wakefield accelerators[J]. Physical Review Special Topics-Accelerators and Beams, 13, 091301(2010).

    [65] Ke L T, Feng K, Wang W T et al. Near-GeV electron beams at a few per-mille level from a laser wakefield accelerator via density-tailored plasma[J]. Physical Review Letters, 126, 214801(2021).

    [66] Oubrerie K, Leblanc A, Kononenko O et al. Controlled acceleration of GeV electron beams in an all-optical plasma waveguide[J]. Light: Science & Applications, 11, 180(2022).

    [67] Lu W, Tzoufras M, Joshi C et al. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime[J]. Physical Review Special Topics - Accelerators and Beams, 10, 061301(2007).

    [68] Wang X M, Zgadzaj R, Fazel N et al. Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV[J]. Nature Communications, 4, 1988(2013).

    [69] Leemans W P, Gonsalves A J, Mao H S et al. Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime[J]. Physical Review Letters, 113, 245002(2014).

    [70] Qin Z Y, Li W T, Liu J Q et al. Multi-GeV cascaded laser wakefield acceleration in a hybrid capillary discharge waveguide[J]. New Journal of Physics, 24, 073048(2022).

    [71] Zhu X Z, Li B Y, Liu F et al. Experimental demonstration of laser guiding and wakefield acceleration in a curved plasma channel[J]. Physical Review Letters, 130, 215001(2023).

    [72] Litos M, Adli E, An W et al. High-efficiency acceleration of an electron beam in a plasma wakefield accelerator[J]. Nature, 515, 92-95(2014).

    [73] Emma P, Venturini M, Bane K L F et al. Experimental demonstration of energy-chirp control in relativistic electron bunches using a corrugated pipe[J]. Physical Review Letters, 112, 034801(2014).

    [74] Brinkmann R, Delbos N, Dornmair I et al. Chirp mitigation of plasma-accelerated beams by a modulated plasma density[J]. Physical Review Letters, 118, 214801(2017).

    [75] Döpp A, Thaury C, Guillaume E et al. Energy-chirp compensation in a laser wakefield accelerator[J]. Physical Review Letters, 121, 074802(2018).

    [76] D’Arcy R, Wesch S, Aschikhin A et al. Tunable plasma-based energy dechirper[J]. Physical Review Letters, 122, 034801(2019).

    [77] Wu Y P, Hua J F, Zhou Z et al. Phase space dynamics of a plasma wakefield dechirper for energy spread reduction[J]. Physical Review Letters, 122, 204804(2019).

    [78] Zhang Z J, Li W T, Liu J S et al. Energy spread minimization in a cascaded laser wakefield accelerator via velocity bunching[J]. Physics of Plasmas, 23, 053106(2016).

    [79] Di Mitri S, Cornacchia M. Electron beam brightness in linac drivers for free-electron-lasers[J]. Physics Reports, 539, 1-48(2014).

    [80] Lundh O, Lim J, Rechatin C et al. Few femtosecond, few kiloampere electron bunch produced by a laser-plasma accelerator[J]. Nature Physics, 7, 219-222(2011).

    [81] Buck A, Nicolai M, Schmid K et al. Real-time observation of laser-driven electron acceleration[J]. Nature Physics, 7, 543-548(2011).

    [82] Lehe R, Kirchen M, Andriyash I A et al. A spectral, quasi-cylindrical and dispersion-free Particle-In-Cell algorithm[J]. Computer Physics Communications, 203, 66-82(2016).

    [83] Jalas S, Dornmair I, Lehe R et al. Accurate modeling of plasma acceleration with arbitrary order pseudo-spectral particle-in-cell methods[J]. Physics of Plasmas, 24, 033115(2017).

    [84] Pousa A F, de la Ossa A M, Assmann R W. Intrinsic energy spread and bunch length growth in plasma-based accelerators due to betatron motion[J]. Scientific Reports, 9, 17690(2019).

    [85] Malaca B, Pardal M, Ramsey D et al. Coherence and superradiance from a plasma-based quasiparticle accelerator[J]. Nature Photonics, 18, 39-45(2024).

    [86] Peng H, Huang T W, Jiang K et al. Coherent subcycle optical shock from a superluminal plasma wake[J]. Physical Review Letters, 131, 145003(2023).

    [87] Rousse A, Phuoc K T, Shah R et al. Production of a keV X-ray beam from synchrotron radiation in relativistic laser-plasma interaction[J]. Physical Review Letters, 93, 135005(2004).

    [88] Yan W C, Chen L M, Li D Z et al. Concurrence of monoenergetic electron beams and bright X-rays from an evolving laser-plasma bubble[J]. Proceedings of the National Academy of Sciences of the United States of America, 111, 5825-5830(2014).

    [89] Ferri J, Corde S, Döpp A et al. High-brilliance betatron γ-ray source powered by laser-accelerated electrons[J]. Physical Review Letters, 120, 254802(2018).

    [90] Guo B, Cheng Z, Liu S et al. Enhancement of laser-driven betatron X-rays by a density-depressed plasma structure[J]. Plasma Physics and Controlled Fusion, 61, 035003(2019).

    [91] Zhu X L, Chen M, Weng S M et al. Extremely brilliant GeV γ‑rays from a two-stage laser-plasma accelerator[J]. Science Advances, 6, eaaz7240(2020).

    [92] Popp A, Vieira J, Osterhoff J et al. All-optical steering of laser-wakefield-accelerated electron beams[J]. Physical Review Letters, 105, 215001(2010).

    [93] Döpp A, Hehn L, Götzfried J et al. Quick X-ray microtomography using a laser-driven betatron source[J]. Optica, 5, 199(2018).

    [94] Shou Y R, Wang P J, Lee S G et al. Brilliant femtosecond-laser-driven hard X-ray flashes from carbon nanotube plasma[J]. Nature Photonics, 17, 137-142(2023).

    [95] Kozlova M, Andriyash I, Gautier J et al. Hard X rays from laser-wakefield accelerators in density tailored plasmas[J]. Physical Review X, 10, 011061(2020).

    [96] Plateau G R, Geddes C G R, Thorn D B et al. Low-emittance electron bunches from a laser-plasma accelerator measured using single-shot X-ray spectroscopy[J]. Physical Review Letters, 109, 064802(2012).

    [97] Qin Z Y, Yu C H, Wang W T et al. Ultralow-emittance measurement of high-quality electron beams from a laser wakefield accelerator[J]. Physics of Plasmas, 25, 023106(2018).

    [98] Schwoerer H, Liesfeld B, Schlenvoigt H P et al. Thomson-backscattered X rays from laser-accelerated electrons[J]. Physical Review Letters, 96, 014802(2006).

    [99] Chen S, Powers N D, Ghebregziabher I et al. MeV-energy X rays from inverse Compton scattering with laser-wakefield accelerated electrons[J]. Physical Review Letters, 110, 155003(2013).

    [100] Powers N D, Ghebregziabher I, Golovin G et al. Quasi-monoenergetic and tunable X-rays from a laser-driven Compton light source[J]. Nature Photonics, 8, 28-31(2014).

    [101] Liu C, Golovin G, Chen S Y et al. Generation of 9  MeV γ-rays by all-laser-driven Compton scattering with second-harmonic laser light[J]. Optics Letters, 39, 4132-4135(2014).

    [102] Sarri G, Corvan D J, Schumaker W et al. Ultrahigh brilliance multi-MeV γ‑ray beams from nonlinear relativistic Thomson scattering[J]. Physical Review Letters, 113, 224801(2014).

    [103] Yan W C, Fruhling C, Golovin G et al. High-order multiphoton Thomson scattering[J]. Nature Photonics, 11, 514-520(2017).

    [104] Tsai H E, Wang X M, Shaw J M et al. Compact tunable Compton X-ray source from laser-plasma accelerator and plasma mirror[J]. Physics of Plasmas, 22, 023106(2015).

    [105] Feng J, Wang J G, Li Y F et al. Intense γ ray generated by refocusing laser pulse on wakefield accelerated electrons[J]. Physics of Plasmas, 24, 093110(2017).

    [106] Ride S K, Esarey E, Baine M. Thomson scattering of intense lasers from electron beams at arbitrary interaction angles[J]. Physical Review E, 52, 5425-5442(1995).

    [107] Zhao Z T, Wang D, Yin L X et al. Shanghai soft X-ray free-electron laser test facility[J]. Acta Optica Sinica, 41, 0114006(2021).

    [108] Bostedt C, Boutet S, Fritz D M et al. Linac Coherent Light Source: the first five years[J]. Reviews of Modern Physics, 88, 015007(2016).

    [109] Fuchs M, Weingartner R, Popp A et al. Laser-driven soft-X-ray undulator source[J]. Nature Physics, 5, 826-829(2009).

    [110] Wang W T, Feng K, Ke L T et al. Free-electron lasing at 27 nanometres based on a laser wakefield accelerator[J]. Nature, 595, 516-520(2021).

    [111] Pompili R, Alesini D, Anania M P et al. Free-electron lasing with compact beam-driven plasma wakefield accelerator[J]. Nature, 605, 659-662(2022).

    [112] Labat M, Cabadağ J C, Ghaith A et al. Seeded free-electron laser driven by a compact laser plasma accelerator[J]. Nature Photonics, 17, 150-156(2023).

    [113] Habib A F, Manahan G G, Scherkl P et al. Attosecond-Angstrom free-electron-laser towards the cold beam limit[J]. Nature Communications, 14, 1054(2023).

    [114] Wang Y C, Cao Z W, Sun X Y et al. Study of photo-transmutation induced by laser wakefield accelerated electrons[J]. High Power Laser and Particle Beams, 35, 091006(2023).

    Tools

    Get Citation

    Copy Citation Text

    Changhai Yu, Zhiyong Qin, Zhijun Zhang, Jiansheng Liu. Laser Wakefield Electron Acceleration and Novel Radiation Sources (Invited)[J]. Chinese Journal of Lasers, 2024, 51(1): 0101002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Nov. 14, 2023

    Accepted: Dec. 12, 2023

    Published Online: Jan. 19, 2024

    The Author Email: Liu Jiansheng (liujs@shnu.edu.cn)

    DOI:10.3788/CJL231403

    CSTR:32183.14.CJL231403

    Topics