Chinese Journal of Lasers, Volume. 51, Issue 1, 0101002(2024)
Laser Wakefield Electron Acceleration and Novel Radiation Sources (Invited)
[1] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 56, 219-221(1985).
[2] Mourou G, Tajima T. More intense, shorter pulses[J]. Science, 331, 41-42(2011).
[3] Krausz F, Brabec T, Schnürer M et al. Extreme nonlinear optics: exposing matter to a few periods of light[J]. Optics and Photonics News, 9, 46-51(1998).
[4] Tajima T, Dawson J M. Laser electron accelerator[J]. Physical Review Letters, 43, 267-270(1979).
[5] Esarey E, Schroeder C B, Leemans W P. Physics of laser-driven plasma-based electron accelerators[J]. Reviews of Modern Physics, 81, 1229-1285(2009).
[6] Pukhov A. Three-dimensional simulations of ion acceleration from a foil irradiated by a short-pulse laser[J]. Physical Review Letters, 86, 3562-3565(2001).
[7] Esirkepov T, Borghesi M, Bulanov S V et al. Highly efficient relativistic-ion generation in the laser-piston regime[J]. Physical Review Letters, 92, 175003(2004).
[8] Yan X Q, Lin C, Sheng Z M et al. Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime[J]. Physical Review Letters, 100, 135003(2008).
[9] Krausz F, Ivanov M. Attosecond physics[J]. Reviews of Modern Physics, 81, 163-234(2009).
[10] Pukhov A. X-rays in a flash[J]. Nature Physics, 2, 439-440(2006).
[11] Dromey B, Zepf M, Gopal A et al. High harmonic generation in the relativistic limit[J]. Nature Physics, 2, 456-459(2006).
[12] Gordienko S, Pukhov A, Shorokhov O et al. Relativistic Doppler effect: universal spectra and zeptosecond pulses[J]. Physical Review Letters, 93, 115002(2004).
[13] Corde S, Ta Phuoc K, Lambert G et al. Femtosecond X rays from laser-plasma accelerators[J]. Reviews of Modern Physics, 85, 1-48(2013).
[14] Faure J, Glinec Y, Pukhov A et al. A laser-plasma accelerator producing monoenergetic electron beams[J]. Nature, 431, 541-544(2004).
[15] Geddes C G R, Toth C, van Tilborg J et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding[J]. Nature, 431, 538-541(2004).
[16] Mangles S P D, Murphy C D, Najmudin Z et al. Monoenergetic beams of relativistic electrons from intense laser-plasma interactions[J]. Nature, 431, 535-538(2004).
[17] Gonsalves A J, Nakamura K, Daniels J et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide[J]. Physical Review Letters, 122, 084801(2019).
[18] Wang W T, Li W T, Liu J S et al. High-brightness high-energy electron beams from a laser wakefield accelerator via energy chirp control[J]. Physical Review Letters, 117, 124801(2016).
[19] Cipiccia S, Islam M R, Ersfeld B et al. Gamma-rays from harmonically resonant betatron oscillations in a plasma wake[J]. Nature Physics, 7, 867-871(2011).
[20] Chen L M, Yan W C, Li D Z et al. Bright betatron X-ray radiation from a laser-driven-clustering gas target[J]. Scientific Reports, 3, 1912(2013).
[21] Chen M, Luo J, Li F Y et al. Tunable synchrotron-like radiation from centimeter scale plasma channels[J]. Light: Science & Applications, 5, e16015(2016).
[22] Yu C H, Liu J S, Wang W T et al. Enhanced betatron radiation by steering a laser-driven plasma wakefield with a tilted shock front[J]. Applied Physics Letters, 112, 133503(2018).
[23] Phuoc K T, Corde S, Thaury C et al. All-optical compton gamma-ray source[J]. Nature Photonics, 6, 308-311(2012).
[24] Yu C H, Qi R, Wang W T et al. Ultrahigh brilliance quasi-monochromatic MeV γ-rays based on self-synchronized all-optical Compton scattering[J]. Scientific Reports, 6, 29518(2016).
[25] He Z H, Beaurepaire B, Nees J A et al. Capturing structural dynamics in crystalline silicon using chirped electrons from a laser wakefield accelerator[J]. Scientific Reports, 6, 36224(2016).
[26] Joshi C. Plasma-based accelerators: then and now[J]. Plasma Physics and Controlled Fusion, 61, 104001(2019).
[27] Bulanov S V, Pegoraro F, Pukhov A M et al. Transverse-wake wave breaking[J]. Physical Review Letters, 78, 4205-4208(1997).
[28] Pukhov A, Meyer-ter-Vehn J. Laser wake field acceleration: the highly non-linear broken-wave regime[J]. Applied Physics B, 74, 355-361(2002).
[29] Joshi C. Plasma accelerators[J]. Scientific American, 294, 40-47(2006).
[30] Bulanov S, Naumova N, Pegoraro F et al. Particle injection into the wave acceleration phase due to nonlinear wake wave breaking[J]. Physical Review E, 58, R5257-R5260(1998).
[31] Kneip S, Nagel S R, Martins S F et al. Near-GeV acceleration of electrons by a nonlinear plasma wave driven by a self-guided laser pulse[J]. Physical Review Letters, 103, 035002(2009).
[32] Kostyukov I, Nerush E, Pukhov A et al. Electron self-injection in multidimensional relativistic-plasma wake fields[J]. Physical Review Letters, 103, 175003(2009).
[33] Umstadter D, Chen S Y, Maksimchuk A et al. Nonlinear optics in relativistic plasmas and laser wake field acceleration of electrons[J]. Science, 273, 472-475(1996).
[34] Thomas A G R, Murphy C D, Mangles S P D et al. Monoenergetic electronic beam production using dual collinear laser pulses[J]. Physical Review Letters, 100, 255002(2008).
[35] Davoine X, Lefebvre E, Rechatin C et al. Cold optical injection producing monoenergetic, multi-GeV electron bunches[J]. Physical Review Letters, 102, 065001(2009).
[36] Oz E, Deng S, Katsouleas T et al. Ionization-induced electron trapping in ultrarelativistic plasma wakes[J]. Physical Review Letters, 98, 084801(2007).
[37] Pak A, Marsh K A, Martins S F et al. Injection and trapping of tunnel-ionized electrons into laser-produced wakes[J]. Physical Review Letters, 104, 025003(2010).
[38] Clayton C E, Ralph J E, Albert F et al. Self-guided laser wakefield acceleration beyond 1 GeV using ionization-induced injection[J]. Physical Review Letters, 105, 105003(2010).
[39] McGuffey C, Thomas A G R, Schumaker W et al. Ionization induced trapping in a laser wakefield accelerator[J]. Physical Review Letters, 104, 025004(2010).
[40] Liu J S, Xia C Q, Wang W T et al. All-optical cascaded laser wakefield accelerator using ionization-induced injection[J]. Physical Review Letters, 107, 035001(2011).
[41] Pollock B B, Clayton C E, Ralph J E et al. Demonstration of a narrow energy spread, ∼0.5 GeV electron beam from a two-stage laser wakefield accelerator[J]. Physical Review Letters, 107, 045001(2011).
[42] Suk H, Barov N, Rosenzweig J B et al. Plasma electron trapping and acceleration in a plasma wake field using a density transition[J]. Physical Review Letters, 86, 1011-1014(2001).
[43] Chien T Y, Chang C L, Lee C H et al. Spatially localized self-injection of electrons in a self-modulated laser-wakefield accelerator by using a laser-induced transient density ramp[J]. Physical Review Letters, 94, 115003(2005).
[44] Buck A, Wenz J, Xu J et al. Shock-front injector for high-quality laser-plasma acceleration[J]. Physical Review Letters, 110, 185006(2013).
[45] Rittershofer W, Schroeder C B, Esarey E et al. Tapered plasma channels to phase-lock accelerating and focusing forces in laser-plasma accelerators[J]. Physics of Plasmas, 17, 063104(2010).
[46] Swanson K K, Tsai H E, Barber S K et al. Control of tunable, monoenergetic laser-plasma-accelerated electron beams using a shock-induced density downramp injector[J]. Physical Review Accelerators and Beams, 20, 051301(2017).
[47] Ke L T, Yu C H, Feng K et al. Optimization of electron beams based on plasma-density modulation in a laser-driven wakefield accelerator[J]. Applied Sciences, 11, 2560(2021).
[48] Froula D H, Clayton C E, Döppner T et al. Measurements of the critical power for self-injection of electrons in a laser wakefield accelerator[J]. Physical Review Letters, 103, 215006(2009).
[49] Gonsalves A J, Nakamura K, Lin C et al. Tunable laser plasma accelerator based on longitudinal density tailoring[J]. Nature Physics, 7, 862-866(2011).
[50] Corde S, Thaury C, Lifschitz A et al. Observation of longitudinal and transverse self-injections in laser-plasma accelerators[J]. Nature Communications, 4, 1501(2013).
[51] Kuschel S, Schwab M B, Yeung M et al. Controlling the self-injection threshold in laser wakefield accelerators[J]. Physical Review Letters, 121, 154801(2018).
[52] Bloom M S, Streeter M J V, Kneip S et al. Bright X-ray radiation from plasma bubbles in an evolving laser wakefield accelerator[J]. Physical Review Accelerators and Beams, 23, 061301(2020).
[53] Faure J, Rechatin C, Norlin A et al. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses[J]. Nature, 444, 737-739(2006).
[54] Rechatin C, Faure J, Ben-Ismail A et al. Controlling the phase-space volume of injected electrons in a laser-plasma accelerator[J]. Physical Review Letters, 102, 164801(2009).
[55] Golovin G, Yan W C, Luo J et al. Electron trapping from interactions between laser-driven relativistic plasma waves[J]. Physical Review Letters, 121, 104801(2018).
[56] Wenz J, Döpp A, Khrennikov K et al. Dual-energy electron beams from a compact laser-driven accelerator[J]. Nature Photonics, 13, 263-269(2019).
[57] Mo M Z, Ali A, Fourmaux S et al. Quasimonoenergetic electron beams from laser wakefield acceleration in pure nitrogen[J]. Applied Physics Letters, 100, 074101(2012).
[58] Mirzaie M, Li S, Zeng M et al. Demonstration of self-truncated ionization injection for GeV electron beams[J]. Scientific Reports, 5, 14659(2015).
[59] Maier A R, Delbos N M, Eichner T et al. Decoding sources of energy variability in a laser-plasma accelerator[J]. Physical Review X, 10, 031039(2020).
[60] Kirchen M, Jalas S, Messner P et al. Optimal beam loading in a laser-plasma accelerator[J]. Physical Review Letters, 126, 174801(2021).
[61] Wan Y, Seemann O, Tata S et al. Direct observation of relativistic broken plasma waves[J]. Nature Physics, 18, 1186-1190(2022).
[62] von der Leyen M W, Holloway J, Ma Y et al. Observation of monoenergetic electrons from two-pulse ionization injection in quasilinear laser wakefields[J]. Physical Review Letters, 130, 105002(2023).
[63] Geddes C G R, Nakamura K, Plateau G R et al. Plasma-density-gradient injection of low absolute-momentum-spread electron bunches[J]. Physical Review Letters, 100, 215004(2008).
[64] Schmid K, Buck A, Sears C M S et al. Density-transition based electron injector for laser driven wakefield accelerators[J]. Physical Review Special Topics-Accelerators and Beams, 13, 091301(2010).
[65] Ke L T, Feng K, Wang W T et al. Near-GeV electron beams at a few per-mille level from a laser wakefield accelerator via density-tailored plasma[J]. Physical Review Letters, 126, 214801(2021).
[66] Oubrerie K, Leblanc A, Kononenko O et al. Controlled acceleration of GeV electron beams in an all-optical plasma waveguide[J]. Light: Science & Applications, 11, 180(2022).
[67] Lu W, Tzoufras M, Joshi C et al. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime[J]. Physical Review Special Topics - Accelerators and Beams, 10, 061301(2007).
[68] Wang X M, Zgadzaj R, Fazel N et al. Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV[J]. Nature Communications, 4, 1988(2013).
[69] Leemans W P, Gonsalves A J, Mao H S et al. Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime[J]. Physical Review Letters, 113, 245002(2014).
[70] Qin Z Y, Li W T, Liu J Q et al. Multi-GeV cascaded laser wakefield acceleration in a hybrid capillary discharge waveguide[J]. New Journal of Physics, 24, 073048(2022).
[71] Zhu X Z, Li B Y, Liu F et al. Experimental demonstration of laser guiding and wakefield acceleration in a curved plasma channel[J]. Physical Review Letters, 130, 215001(2023).
[72] Litos M, Adli E, An W et al. High-efficiency acceleration of an electron beam in a plasma wakefield accelerator[J]. Nature, 515, 92-95(2014).
[73] Emma P, Venturini M, Bane K L F et al. Experimental demonstration of energy-chirp control in relativistic electron bunches using a corrugated pipe[J]. Physical Review Letters, 112, 034801(2014).
[74] Brinkmann R, Delbos N, Dornmair I et al. Chirp mitigation of plasma-accelerated beams by a modulated plasma density[J]. Physical Review Letters, 118, 214801(2017).
[75] Döpp A, Thaury C, Guillaume E et al. Energy-chirp compensation in a laser wakefield accelerator[J]. Physical Review Letters, 121, 074802(2018).
[76] D’Arcy R, Wesch S, Aschikhin A et al. Tunable plasma-based energy dechirper[J]. Physical Review Letters, 122, 034801(2019).
[77] Wu Y P, Hua J F, Zhou Z et al. Phase space dynamics of a plasma wakefield dechirper for energy spread reduction[J]. Physical Review Letters, 122, 204804(2019).
[78] Zhang Z J, Li W T, Liu J S et al. Energy spread minimization in a cascaded laser wakefield accelerator via velocity bunching[J]. Physics of Plasmas, 23, 053106(2016).
[79] Di Mitri S, Cornacchia M. Electron beam brightness in linac drivers for free-electron-lasers[J]. Physics Reports, 539, 1-48(2014).
[80] Lundh O, Lim J, Rechatin C et al. Few femtosecond, few kiloampere electron bunch produced by a laser-plasma accelerator[J]. Nature Physics, 7, 219-222(2011).
[81] Buck A, Nicolai M, Schmid K et al. Real-time observation of laser-driven electron acceleration[J]. Nature Physics, 7, 543-548(2011).
[82] Lehe R, Kirchen M, Andriyash I A et al. A spectral, quasi-cylindrical and dispersion-free Particle-In-Cell algorithm[J]. Computer Physics Communications, 203, 66-82(2016).
[83] Jalas S, Dornmair I, Lehe R et al. Accurate modeling of plasma acceleration with arbitrary order pseudo-spectral particle-in-cell methods[J]. Physics of Plasmas, 24, 033115(2017).
[84] Pousa A F, de la Ossa A M, Assmann R W. Intrinsic energy spread and bunch length growth in plasma-based accelerators due to betatron motion[J]. Scientific Reports, 9, 17690(2019).
[85] Malaca B, Pardal M, Ramsey D et al. Coherence and superradiance from a plasma-based quasiparticle accelerator[J]. Nature Photonics, 18, 39-45(2024).
[86] Peng H, Huang T W, Jiang K et al. Coherent subcycle optical shock from a superluminal plasma wake[J]. Physical Review Letters, 131, 145003(2023).
[87] Rousse A, Phuoc K T, Shah R et al. Production of a keV X-ray beam from synchrotron radiation in relativistic laser-plasma interaction[J]. Physical Review Letters, 93, 135005(2004).
[88] Yan W C, Chen L M, Li D Z et al. Concurrence of monoenergetic electron beams and bright X-rays from an evolving laser-plasma bubble[J]. Proceedings of the National Academy of Sciences of the United States of America, 111, 5825-5830(2014).
[89] Ferri J, Corde S, Döpp A et al. High-brilliance betatron γ-ray source powered by laser-accelerated electrons[J]. Physical Review Letters, 120, 254802(2018).
[90] Guo B, Cheng Z, Liu S et al. Enhancement of laser-driven betatron X-rays by a density-depressed plasma structure[J]. Plasma Physics and Controlled Fusion, 61, 035003(2019).
[91] Zhu X L, Chen M, Weng S M et al. Extremely brilliant GeV γ‑rays from a two-stage laser-plasma accelerator[J]. Science Advances, 6, eaaz7240(2020).
[92] Popp A, Vieira J, Osterhoff J et al. All-optical steering of laser-wakefield-accelerated electron beams[J]. Physical Review Letters, 105, 215001(2010).
[93] Döpp A, Hehn L, Götzfried J et al. Quick X-ray microtomography using a laser-driven betatron source[J]. Optica, 5, 199(2018).
[94] Shou Y R, Wang P J, Lee S G et al. Brilliant femtosecond-laser-driven hard X-ray flashes from carbon nanotube plasma[J]. Nature Photonics, 17, 137-142(2023).
[95] Kozlova M, Andriyash I, Gautier J et al. Hard X rays from laser-wakefield accelerators in density tailored plasmas[J]. Physical Review X, 10, 011061(2020).
[96] Plateau G R, Geddes C G R, Thorn D B et al. Low-emittance electron bunches from a laser-plasma accelerator measured using single-shot X-ray spectroscopy[J]. Physical Review Letters, 109, 064802(2012).
[97] Qin Z Y, Yu C H, Wang W T et al. Ultralow-emittance measurement of high-quality electron beams from a laser wakefield accelerator[J]. Physics of Plasmas, 25, 023106(2018).
[98] Schwoerer H, Liesfeld B, Schlenvoigt H P et al. Thomson-backscattered X rays from laser-accelerated electrons[J]. Physical Review Letters, 96, 014802(2006).
[99] Chen S, Powers N D, Ghebregziabher I et al. MeV-energy X rays from inverse Compton scattering with laser-wakefield accelerated electrons[J]. Physical Review Letters, 110, 155003(2013).
[100] Powers N D, Ghebregziabher I, Golovin G et al. Quasi-monoenergetic and tunable X-rays from a laser-driven Compton light source[J]. Nature Photonics, 8, 28-31(2014).
[101] Liu C, Golovin G, Chen S Y et al. Generation of 9 MeV γ-rays by all-laser-driven Compton scattering with second-harmonic laser light[J]. Optics Letters, 39, 4132-4135(2014).
[102] Sarri G, Corvan D J, Schumaker W et al. Ultrahigh brilliance multi-MeV γ‑ray beams from nonlinear relativistic Thomson scattering[J]. Physical Review Letters, 113, 224801(2014).
[103] Yan W C, Fruhling C, Golovin G et al. High-order multiphoton Thomson scattering[J]. Nature Photonics, 11, 514-520(2017).
[104] Tsai H E, Wang X M, Shaw J M et al. Compact tunable Compton X-ray source from laser-plasma accelerator and plasma mirror[J]. Physics of Plasmas, 22, 023106(2015).
[105] Feng J, Wang J G, Li Y F et al. Intense γ ray generated by refocusing laser pulse on wakefield accelerated electrons[J]. Physics of Plasmas, 24, 093110(2017).
[106] Ride S K, Esarey E, Baine M. Thomson scattering of intense lasers from electron beams at arbitrary interaction angles[J]. Physical Review E, 52, 5425-5442(1995).
[107] Zhao Z T, Wang D, Yin L X et al. Shanghai soft X-ray free-electron laser test facility[J]. Acta Optica Sinica, 41, 0114006(2021).
[108] Bostedt C, Boutet S, Fritz D M et al. Linac Coherent Light Source: the first five years[J]. Reviews of Modern Physics, 88, 015007(2016).
[109] Fuchs M, Weingartner R, Popp A et al. Laser-driven soft-X-ray undulator source[J]. Nature Physics, 5, 826-829(2009).
[110] Wang W T, Feng K, Ke L T et al. Free-electron lasing at 27 nanometres based on a laser wakefield accelerator[J]. Nature, 595, 516-520(2021).
[111] Pompili R, Alesini D, Anania M P et al. Free-electron lasing with compact beam-driven plasma wakefield accelerator[J]. Nature, 605, 659-662(2022).
[112] Labat M, Cabadağ J C, Ghaith A et al. Seeded free-electron laser driven by a compact laser plasma accelerator[J]. Nature Photonics, 17, 150-156(2023).
[113] Habib A F, Manahan G G, Scherkl P et al. Attosecond-Angstrom free-electron-laser towards the cold beam limit[J]. Nature Communications, 14, 1054(2023).
[114] Wang Y C, Cao Z W, Sun X Y et al. Study of photo-transmutation induced by laser wakefield accelerated electrons[J]. High Power Laser and Particle Beams, 35, 091006(2023).
Get Citation
Copy Citation Text
Changhai Yu, Zhiyong Qin, Zhijun Zhang, Jiansheng Liu. Laser Wakefield Electron Acceleration and Novel Radiation Sources (Invited)[J]. Chinese Journal of Lasers, 2024, 51(1): 0101002
Category: laser devices and laser physics
Received: Nov. 14, 2023
Accepted: Dec. 12, 2023
Published Online: Jan. 19, 2024
The Author Email: Liu Jiansheng (liujs@shnu.edu.cn)
CSTR:32183.14.CJL231403