Journal of the Chinese Ceramic Society, Volume. 53, Issue 4, 748(2025)

Enhanced Thermoelectric and Mechanical Properties of Bi-Sb-Te Alloys via Na2S Doping

YU Jianghu, SHI Yongcai, LIANG Hao, WANG Yangwei, ZHANG Yixing, FENG Jing, and GE Zhenhua*
Author Affiliations
  • Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
  • show less
    References(30)

    [1] [1] JIN K P, YANG Z Y, FU L W, et al. All-inorganic halide perovskites boost high-ranged figure-of-merit in Bi0.4Sb1.6Te3 for thermoelectric cooling and low-grade heat recovery[J]. ACS Nano, 2024, 18(21): 13924–13938.

    [2] [2] WANG G X, MENG F Z, CHEN Y Q, et al. Boosting thermoelectric performance of Bi2Te3 material by microstructure engineering[J]. Adv Sci, 2024, 11(6): 2308056.

    [3] [3] GUO Z, SONG K, YAN Z P, et al. Broadening the optimum thermoelectric power generation range of p-type sintered Bi0.4Sb1.6Te3 by suppressing bipolar effect[J]. Chem Eng J, 2021, 426: 131853.

    [4] [4] CHUEACHOT R, NAKHOWONG R. Achieving thermoelectric performance of rGO/Bi0.5Sb1.5Te3/Cu2Se1–xTe composites through the scattering engineering strategy[J]. J Materiomics, 2024, 10(5): 1091–1100.

    [5] [5] FANG T, LI X, HU C L, et al. Complex band structures and lattice dynamics of Bi2Te3-based compounds and solid solutions[J]. Adv Funct Mater, 2019, 29(28): 1900677.

    [6] [6] QIN H X, ZHANG Y, CAI S T, et al. Critical role of tellurium self-compensation in enhancing the thermoelectric performance of p-type Bi0.4Sb1.6Te3 alloy[J]. Chem Eng J, 2021, 425: 130670.

    [7] [7] LIANG H, GUO J, ZHOU Y X, et al. CuPbBi5S9 thermoelectric material with an intrinsic low thermal conductivity: Synthesis and properties[J]. J Materiomics, 2022, 8(1): 174–183.

    [8] [8] GAUTAM A K, KHARE N. Enhanced thermoelectric figure of merit at near room temperature in n-type binary silver telluride nanoparticles[J]. J Materiomics, 2023, 9(2): 310–317.

    [9] [9] LIU S, MA L M, ZHEN C, et al. Enhancing power generation sustainability of thermoelectric Pillars by suppressing diffusion at Bi-Sb-Te/Sn electrode interface using crystalline Co-P coatings[J]. Appl Energy, 2023, 352: 121997.

    [10] [10] LIU W D, YIN L C, LI L, et al. Grain boundary re-crystallization and sub-nano regions leading to high plateau figure of merit for Bi2Te3 nanoflakes[J]. Energy Environ Sci, 2023, 16(11): 5123–5135.

    [11] [11] QIN Y X, QIN B C, HONG T, et al. Grid-plainification enables medium-temperature PbSe thermoelectrics to cool better than Bi2Te3[J]. Science, 2024, 383(6688): 1204–1209.

    [12] [12] ZHUANG H L, HU H H, PEI J, et al. High ZT in p-type thermoelectric (Bi, Sb)2Te3 with built-in nanopores[J]. Energy Environ Sci, 2022, 15(5): 2039–2048.

    [13] [13] WU G, ZHANG Q, FU Y T, et al. High-efficiency thermoelectric module based on high-performance Bi0.42Sb1.58Te3 materials[J]. Adv Funct Materials, 2023, 33(47): 2305686.

    [14] [14] SHI Y C, YANG J M, WANG Y, et al. Highly effective solid solution towards high thermoelectric and mechanical performance in Bi–Sb–Te alloysviaTrojan doping[J]. Energy Environ Sci, 2024, 17(6): 2326–2335.

    [15] [15] LIANG H, LOU Q, ZHU Y K, et al. Highly enhanced thermoelectric and mechanical properties of Bi–Sb–Te compounds by carrier modulation and microstructure adjustment[J]. ACS Appl Mater Interfaces, 2021, 13(38): 45589–45599.

    [16] [16] QIN B C, ZHAO L D. Moving fast makes for better cooling[J]. Science, 2022, 378(6622): 832–833.

    [17] [17] WANG Y, YANG X, FENG J, et al. Nanostructuring and band engineering boosting thermoelectric performance of Bi-Sb-Te alloysviaCsBr doping[J]. Sci China Mater, 2023, 66(10): 3991–4000.

    [18] [18] GENG Y, HE H Y, LIANG R N, et al. One-step-sintered GeTe-Bi2Te3 segmented thermoelectric legs with robust interface-connection performance[J]. Adv Energy Mater, 2024, 14(41): 2402479.

    [19] [19] SUN F H, LI H Z, TAN J, et al. Review of currentZT> 1 thermoelectric sulfides[J]. J Materiomics, 2024, 10(1): 218–233.

    [20] [20] LIU M, LI W, PEI Y Z. Screening metal diffusion barriers for thermoelectric Bi0.5Sb1.5Te3[J]. Sci China Mater, 2024, 67(1): 289–294.

    [21] [21] XIAO Y, ZHAO L D. Seeking new, highly effective thermoelectrics[J]. Science, 2020, 367(6483): 1196–1197.

    [25] [25] HU L P, ZHU T J, WANG Y G, et al. Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction[J]. NPG Asia Mater, 2014, 6(2): e88.

    [26] [26] FENG D, CHEN Y X, FU L W, et al. SnSe+Ag2Se composite engineering with ball milling for enhanced thermoelectric performance[J]. Rare Met, 2018, 37(4): 333–342.

    [27] [27] CHEN W Y, SHI X L, YANG Q S, et al. Solvothermally silver doping boosting the thermoelectric performance of polycrystalline Bi2Te3[J]. Chem Eng J, 2023, 475: 146428.

    [28] [28] WU D, XIE L, CHAO X L, et al. Step-up thermoelectric performance realized in Bi2Te3 alloyed GeTevia carrier concentration and microstructure modulations[J]. ACS Appl Energy Mater, 2019, 2(3): 1616–1622.

    [29] [29] LI C Y, NIU J X, ZHANG J Y, et al. Thermoelectric and mechanical properties of Bi0.42Sb1.58Te3/SnO2 bulk composites with controllable ZT peak for power generation[J]. J Eur Ceram Soc, 2024, 44(2): 961–969.

    [30] [30] ZHUANG H L, PEI J, CAI B W, et al. Thermoelectric performance enhancement in BiSbTe alloy by microstructure modulationviacyclic spark plasma sintering with liquid phase[J]. Adv Funct Mater, 2021, 31(15): 2009681.

    [32] [32] LIU F, ZHANG M, NAN P F, et al. Unraveling the origin of donor-like effect in bismuth–telluride-based thermoelectric materials[J]. Small Sci, 2023: 2300082.

    [33] [33] LI J, XU W L, JIN K P, et al. Vacancy manipulation by ordered mesoporous induced optimal carrier concentration and low lattice thermal conductivity in BixSb2–xTe3 yielding superior thermoelectric performance[J]. Small, 2024: e2406179.

    [34] [34] PEI J, DONG J F, CAI B W, et al. Weak-ferromagnetism for room temperature thermoelectric performance enhancement in p-type (Bi, Sb)2Te3[J]. Mater Today Phys, 2021, 19: 100423.

    Tools

    Get Citation

    Copy Citation Text

    YU Jianghu, SHI Yongcai, LIANG Hao, WANG Yangwei, ZHANG Yixing, FENG Jing, GE Zhenhua. Enhanced Thermoelectric and Mechanical Properties of Bi-Sb-Te Alloys via Na2S Doping[J]. Journal of the Chinese Ceramic Society, 2025, 53(4): 748

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Oct. 9, 2024

    Accepted: May. 29, 2025

    Published Online: May. 29, 2025

    The Author Email: GE Zhenhua (zge@kust.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20240642

    Topics