Journal of Optoelectronics · Laser, Volume. 35, Issue 10, 1050(2024)

A precise segmentation algorithm suitable for corneal deformation regions

LI Jing, LI Mingyue, LAI Yuqing, and BAI Jinshuai
Author Affiliations
  • Key Laboratory on Computer Vision and Systems, Ministry of Education of China, Key Laboratory on Intelligence Computing and Novel Software Technology of the City of Tianjin, Tianjin University of Technology, Tianjin 300384, China
  • show less
    References(21)

    [1] [1] SANTODOMINGO-RUBIDO J, CARRACEDO G, SUZAKI A, et al. Keratoconus: An updated review[J]. Contact Lens & Anterior Eye, 2022, 45(3): 101559.

    [2] [2] SHARIF R, BAK-NIELSEN S, HJORTDAL J , et al. Pathogenesis of Keratoconus: The intriguing therapeutic potential of Prolactin- inducible protein[J]. Progress in Retinal and Eye Research, 2018, 67: 150-167.

    [6] [6] SHEN Y, FANG Z J, GAO Y B, et al. Coronary arteries segmentation based on 3D FCN with attention gate and level set function[J]. IEEE Access, 2019, 7: 42826-42835.

    [7] [7] CAELLES S, MANINIS K K, PONT- TUSET J, et al. One-shot video object segmentation[J]. IEEE Transactions on Pattern Analysis and and Machine Intelligence, 2019, 41(6): 1515-1530.

    [8] [8] CASANOVA A, PINHEIRO P O, ROSTAMZADEH N, et al. Reinforced active learning for image segmentation[EB/OL].(2020-02-16)[2023-04-06]. https://arxiv.org/abs/2002.06583.

    [10] [10] LU X K, WANG W G, SHEN J B, et al. Learning video object segmentation from unlabeled videos[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 13-19, 2020, Seattle, WA, USA. New York: IEEE, 2020: 8957-8967.

    [11] [11] ELIASOF M, ZIKRI N B, TREISTER E. Unsupervised image semantic segmentation through superpixels and graph neural networks[EB/OL].(2022-10-21)[2024-04-22]. https://arxiv.org/abs/2210.11810.

    [12] [12] ZHOU T F, LI J W, LI X Y, et al. Target-aware object discovery and association for unsupervised video multi-object segmentation[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 20-25, 2021, Nashville, TN, USA. New York: IEEE, 2021: 6981-6990.

    [13] [13] REN S C, LIU W X, LIU Y T, et al. Reciprocal transformations for unsupervised video object segmentation[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 20-25, 2021, Nashville, TN, USA. New York: IEEE, 2021: 15430-15439.

    [14] [14] LIAN L, WU Z R, YU S X. Improving unsupervised video object segmentation with motion-appearance synergy[EB/OL].(2022-12-17)[2024-04-22]. https://arxiv.org/abs/2212.08816.

    [15] [15] HASAN M K, DAHAL L, SAMARAKOON P N, et al. DSNet: automatic dermoscopic skin lesion segmentation[J]. Computers in Biology and Medicine, 2020, 120: 103738.

    [16] [16] RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation, medical image computing and computer-assisted intervention[C]//MICCAI 2015, Medical Image Computing and Computer-Assisted Intervention, October 5-9, 2015, Munich, Germany. Cham: Springer, 2015: 234-241.

    [17] [17] CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//European Conference on Computer Vision (ECCV), September 8-14, 2018, Munich, Germany. Cham: Springer, 2018: 801-818.

    [18] [18] HE K M, GKIOXARI G, DOLL'AR P, et al. Mask R-CNN[C]/IEEE International Conference on Computer Vision, October 22-29, 2017, Venice, Italy. New York: IEEE, 2017: 2961-2969.

    [19] [19] KUMAR P, NAGAR P, ARORA C, et al. U-Segnet: fully convolutional neural network based automated brain tissue segmentation tool[C]//2018 25th IEEE International Conference on Image Processing (ICIP), October 07-10, 2018, Athens, Greece. New York: IEEE, 2018: 3503-3507.

    [21] [21] LIU S, ZHUANG Z, ZHENG Y F, et al. A VAN-based multi-scale cross-attention mechanism for skin lesion segmentation network[J]. IEEE Access, 2023, 11: 81953-81964.

    [22] [22] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023.

    [24] [24] SZEGEDY C, LIU W, JIA Y Q. Going deeper with convolutions[C]//IEEE Conference on Computer Vision and Pattern Recognition, June 07-12, 2015, Boston, MA, USA. New York: IEEE, 2015: 1-9.

    [25] [25] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 2016: 770-778.

    [26] [26] OKTAY O, SCHLEMPER J, LE FOLGOC L, et al. Attention U-Net: Learning where to look for the pancreas[EB/OL].(2018-04-11)[2024-04-22]. https://arxiv.org/abs/1804.03999.

    [27] [27] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//IEEE International Conference on Computer Vision, October 22-29, 2017, Venice, Italy. New York: IEEE, 2017: 2999-3007.

    Tools

    Get Citation

    Copy Citation Text

    LI Jing, LI Mingyue, LAI Yuqing, BAI Jinshuai. A precise segmentation algorithm suitable for corneal deformation regions[J]. Journal of Optoelectronics · Laser, 2024, 35(10): 1050

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 22, 2024

    Accepted: Dec. 31, 2024

    Published Online: Dec. 31, 2024

    The Author Email:

    DOI:10.16136/j.joel.2024.10.0211

    Topics