Remote Sensing Technology and Application, Volume. 39, Issue 3, 547(2024)

Research on Lightweight Network for Rapid Detection of Remote Sensing Image Targets based on YOLO

Wei WANG, Yong CHENG, Yuke ZHOU, Wenjie ZHANG, Jun WANG, Jiaxin HE, and Yakang GU
Author Affiliations
  • School of Automation, Nanjing University of Information Science & Technology, Nanjing210044, China
  • show less
    References(35)

    [1] Shutao LI, Congyu LI, Xudong KANG. Development status and future prospects of multi-source remote sensing image fusion. National Remote Sensing Bulletin, 25, 148-166(2021).

    [2] Yang LIU, Zhengye FU, Fengbin ZHENG. Review on high reso-lution remote sensing image classification and recognition. Journal of Geo-information Science, 17, 1080-1091(2015).

    [3] Runsheng WANG, Shenqing XIONG, Hongfeng NIE et al. Remote sensing technology and its application in geological exploration. Acta Geologica Sinica, 85, 1699-1743(2011).

    [4] Yanqing WANG, Lei MA, Yuan TIAN. State-of-the-art of ship detection and recognition in optical remotely sensed imagery. Acta Automatica Sinica, 37, 1029-1039(2011).

    [5] Zhisheng YAO. Research on theories and methods of short-term traffic flow forecasting of road network based on real-time data(2007).

    [6] Song LI, Yiqiu LI, Yulun AN. Automatic recognition of landslides based on change detection. Remote Sensing Information, 25, 27-31(2010).

    [7] Guangtao NIE, Hua HUANG. A survey of object detection in optical remote sensing images. Acta Automatica Sinica, 47, 1749-1768(2021).

    [8] S Q REN, K M HE, R GIRSHICK et al. Faster R-CNN: Towards real-time object detection with region proposal networks, 28(2015).

    [9] J REDMON, S DIVVALA, R GIRSHICK et al. You only look once: Unified, Real-Time object detection, 779-788(2016).

    [10] J REDMON, A FARHADI. YOLO9000:Better,faster,stronger, 6517-6525(2017).

    [11] J REDMON, A FARHADI. Yolov3: An incremental improvement. arXiv Preprint, 2018(02767).

    [12] A BOCHKOVSKIY, C Y WANG, H Y M LIAO. Yolov4: Op-timal speed and accuracy of object detection. arXiv Preprint, 2020(10934).

    [13] Z GE, S T LIU, F WANG et al. Yolox: Exceeding YOLO series in 2021. arXiv Preprint, 2021(08430).

    [14] OU Pan, Zheng ZHANG, Kui LU et al. Object detectionin of remote sensing images based on convolutional neural networks. Laser & Optoelectronics Progress, 56, 74-80(2019).

    [15] Xingxing XIE, Gong CHENG, Yanqing YAO et al. Dynamic feature fusion for object detection in remote sensing images. Chenese Journal Of Computers, 45, 735-747(2022).

    [16] X W XU, X L ZHANG, T W ZHANG et al. On-board ship setection in SAR images based on L-YOLO, 1-5(2022).

    [17] Yuanjun NONG, Junjie WANG. Real-time object detection in remote sensing images based on embedded system. Acta Optica Sinica, 41, 179-186(2021).

    [18] Q WU, B ZHANG, C G XU et al. Dense oil tank detection and classification via YOLOX-TR network in large-scale SAR images. Remote Sensing, 14, 3246(2022).

    [19] F X XU, X Z AN, W Q LIU. Oil spill detection in SAR images based on improved YOLOX-S, 261-265(2022).

    [20] H ZHANG, M CISSE, Y N DAUPHIN et al. Mixup: beyond empirical risk minimization. arXiv Preprint, 2017(09412).

    [21] S LIU, L QI, H QIN et al. Path aggregation network for ins-tance segmentation, 8759-8768(2018).

    [22] A HOWARD, M SANDLER, G CHU et al. Searching for MobileNetV3, 1314-1324(2019).

    [23] Q L WANG, B G WU, P F ZHU et al. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks, 11531-11539(2020).

    [24] K HAN, Y H WANG, Q TIAN et al. GhostNet: more features from cheap operations, 1580-1589(2020).

    [25] J B HE, S ERFANI, X J MA et al. Alpha-IoU: A family of power intersection over union losses for bounding box regression, 34, 20230-20242(2021).

    [26] H Y ZHANG, Y WANG, F DAYOUB et al. Varifocalnet:An iou-aware dense object detector, 8514-8523(2021).

    [27] T Y LIN, M MAIRE, S BELONGIE et al. Microsoft coco: common objects in context, 740-755(2014).

    [28] G CHENG, J W HAN. A survey on object detection in optical remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing, 117, 11-28(2016).

    [29] K LI, G WAN, G CHENG et al. Object detection in optical remote sensing images: A survey and a new benchmark. ISPRS Journal of Photogrammetry and Remote Sensing, 159, 296-307(2020).

    [30] G CHENG, J B WANG, K LI et al. Anchor-free oriented proposal generator for object detection. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-11(2022).

    [31] W T LI, Y J CHEN, K X HU et al. Oriented RepPoints for aerial object detection, 1819-1828(2022).

    [32] Z C HUANG, W LI, X G XIA et al. LO-Det: lightweight oriented object detection in remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-15(2022).

    [33] T XU, X SUN, W H DIAO et al. ASSD: Feature aligned single-shot detection for multiscale objects in aerial imagery. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-17(2022).

    [34] Yanqing YAO, Gong CHENG, Xingxing XIE et al. Optical remote sensing image object detection based on multiresolution feature fusion. National Remote Sensing Bulletin, 25, 1124-1137(2021).

    [35] Lei LANG, Kuan LIU, Dong WANG. Lightweight remote sensing object detector based on YOLOX-Tiny. Laser & Optoelectronics Progress, 60, 362-372(2023).

    Tools

    Get Citation

    Copy Citation Text

    Wei WANG, Yong CHENG, Yuke ZHOU, Wenjie ZHANG, Jun WANG, Jiaxin HE, Yakang GU. Research on Lightweight Network for Rapid Detection of Remote Sensing Image Targets based on YOLO[J]. Remote Sensing Technology and Application, 2024, 39(3): 547

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 11, 2022

    Accepted: --

    Published Online: Dec. 9, 2024

    The Author Email:

    DOI:10.11873/j.issn.1004-0323.2024.3.0547

    Topics