Remote Sensing Technology and Application, Volume. 39, Issue 3, 547(2024)

Research on Lightweight Network for Rapid Detection of Remote Sensing Image Targets based on YOLO

Wei WANG, Yong CHENG, Yuke ZHOU, Wenjie ZHANG, Jun WANG, Jiaxin HE, and Yakang GU
Author Affiliations
  • School of Automation, Nanjing University of Information Science & Technology, Nanjing210044, China
  • show less
    References(35)

    [1] LI Shutao, LI Congyu, KANG Xudong. Development status and future prospects of multi-source remote sensing image fusion. National Remote Sensing Bulletin, 25, 148-166(2021).

    [2] LIU Yang, FU Zhengye, ZHENG Fengbin. Review on high reso-lution remote sensing image classification and recognition. Journal of Geo-information Science, 17, 1080-1091(2015).

    [3] WANG Runsheng, XIONG Shenqing, NIE Hongfeng et al. Remote sensing technology and its application in geological exploration. Acta Geologica Sinica, 85, 1699-1743(2011).

    [4] WANG Yanqing, MA Lei, TIAN Yuan. State-of-the-art of ship detection and recognition in optical remotely sensed imagery. Acta Automatica Sinica, 37, 1029-1039(2011).

    [5] YAO Zhisheng. Research on theories and methods of short-term traffic flow forecasting of road network based on real-time data(2007).

    [6] LI Song, LI Yiqiu, AN Yulun. Automatic recognition of landslides based on change detection. Remote Sensing Information, 25, 27-31(2010).

    [7] NIE Guangtao, HUANG Hua. A survey of object detection in optical remote sensing images. Acta Automatica Sinica, 47, 1749-1768(2021).

    [8] REN S Q, HE K M, GIRSHICK R et al. Faster R-CNN: Towards real-time object detection with region proposal networks, 28(2015).

    [9] REDMON J, DIVVALA S, GIRSHICK R et al. You only look once: Unified, Real-Time object detection, 779-788(2016).

    [10] REDMON J, FARHADI A. YOLO9000:Better,faster,stronger, 6517-6525(2017).

    [11] REDMON J, FARHADI A. Yolov3: An incremental improvement. arXiv Preprint, 2018(02767).

    [12] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: Op-timal speed and accuracy of object detection. arXiv Preprint, 2020(10934).

    [13] GE Z, LIU S T, WANG F et al. Yolox: Exceeding YOLO series in 2021. arXiv Preprint, 2021(08430).

    [14] Pan OU, ZHANG Zheng, LU Kui et al. Object detectionin of remote sensing images based on convolutional neural networks. Laser & Optoelectronics Progress, 56, 74-80(2019).

    [15] XIE Xingxing, CHENG Gong, YAO Yanqing et al. Dynamic feature fusion for object detection in remote sensing images. Chenese Journal Of Computers, 45, 735-747(2022).

    [16] XU X W, ZHANG X L, ZHANG T W et al. On-board ship setection in SAR images based on L-YOLO, 1-5(2022).

    [17] NONG Yuanjun, WANG Junjie. Real-time object detection in remote sensing images based on embedded system. Acta Optica Sinica, 41, 179-186(2021).

    [18] WU Q, ZHANG B, XU C G et al. Dense oil tank detection and classification via YOLOX-TR network in large-scale SAR images. Remote Sensing, 14, 3246(2022).

    [19] XU F X, AN X Z, LIU W Q. Oil spill detection in SAR images based on improved YOLOX-S, 261-265(2022).

    [20] ZHANG H, CISSE M, DAUPHIN Y N et al. Mixup: beyond empirical risk minimization. arXiv Preprint, 2017(09412).

    [21] LIU S, QI L, QIN H et al. Path aggregation network for ins-tance segmentation, 8759-8768(2018).

    [22] HOWARD A, SANDLER M, CHU G et al. Searching for MobileNetV3, 1314-1324(2019).

    [23] WANG Q L, WU B G, ZHU P F et al. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks, 11531-11539(2020).

    [24] HAN K, WANG Y H, TIAN Q et al. GhostNet: more features from cheap operations, 1580-1589(2020).

    [25] HE J B, ERFANI S, MA X J et al. Alpha-IoU: A family of power intersection over union losses for bounding box regression, 34, 20230-20242(2021).

    [26] ZHANG H Y, WANG Y, DAYOUB F et al. Varifocalnet:An iou-aware dense object detector, 8514-8523(2021).

    [27] LIN T Y, MAIRE M, BELONGIE S et al. Microsoft coco: common objects in context, 740-755(2014).

    [28] CHENG G, HAN J W. A survey on object detection in optical remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing, 117, 11-28(2016).

    [29] LI K, WAN G, CHENG G et al. Object detection in optical remote sensing images: A survey and a new benchmark. ISPRS Journal of Photogrammetry and Remote Sensing, 159, 296-307(2020).

    [30] CHENG G, WANG J B, LI K et al. Anchor-free oriented proposal generator for object detection. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-11(2022).

    [31] LI W T, CHEN Y J, HU K X et al. Oriented RepPoints for aerial object detection, 1819-1828(2022).

    [32] HUANG Z C, LI W, XIA X G et al. LO-Det: lightweight oriented object detection in remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-15(2022).

    [33] XU T, SUN X, DIAO W H et al. ASSD: Feature aligned single-shot detection for multiscale objects in aerial imagery. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-17(2022).

    [34] YAO Yanqing, CHENG Gong, XIE Xingxing et al. Optical remote sensing image object detection based on multiresolution feature fusion. National Remote Sensing Bulletin, 25, 1124-1137(2021).

    [35] LANG Lei, LIU Kuan, WANG Dong. Lightweight remote sensing object detector based on YOLOX-Tiny. Laser & Optoelectronics Progress, 60, 362-372(2023).

    Tools

    Get Citation

    Copy Citation Text

    Wei WANG, Yong CHENG, Yuke ZHOU, Wenjie ZHANG, Jun WANG, Jiaxin HE, Yakang GU. Research on Lightweight Network for Rapid Detection of Remote Sensing Image Targets based on YOLO[J]. Remote Sensing Technology and Application, 2024, 39(3): 547

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 11, 2022

    Accepted: --

    Published Online: Dec. 9, 2024

    The Author Email:

    DOI:10.11873/j.issn.1004-0323.2024.3.0547

    Topics