Chinese Journal of Lasers, Volume. 51, Issue 4, 0402402(2024)
Prospects for Ultrafast Observation of Femtosecond Laser Ablation in Liquid(Invited)
[1] Wang R H, Liu H M, Zhang Y H et al. Integrated photovoltaic charging and energy storage systems: mechanism, optimization, and future[J]. Small, 18, 2203014(2022).
[2] Nan X L, Wang X, Kang T T et al. Review of flexible wearable sensor devices for biomedical application[J]. Micromachines, 13, 1395(2022).
[3] Ma Y M, Dong B W, Lee C K. Progress of infrared guided-wave nanophotonic sensors and devices[J]. Nano Convergence, 7, 1-34(2020).
[4] Li J Q, Yan J F, Li X et al. Research advancement on ultrafast laser microprocessing of transparent dielectrics[J]. Chinese Journal of Lasers, 48, 0202019(2021).
[5] Batista L M F, Nag A, Meader V K et al. Generation of nanomaterials by reactive laser-synthesis in liquid[J]. Science China Physics, Mechanics & Astronomy, 65, 274202(2022).
[6] Jiang L, Wang A D, Li B et al. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application[J]. Light: Science & Applications, 7, 17134(2018).
[7] Yi P, Fu X P, Liu Y et al. Triboelectric active pressure sensor with ultrabroad linearity range by femtosecond laser shaping based on electrons dynamics control[J]. Nano Energy, 113, 108592(2023).
[8] Wu M N, Li X W, Xiang Z K et al. Machining of micro-optical elements using electrons dynamics controlled temporally/spatially shaped femtosecond laser[J]. Chinese Journal of Lasers, 49, 1002501(2022).
[9] Ning Z Q, Lian Y L, Jiang L et al. Femtosecond laser-induced anisotropic structure and nonlinear optical response of yttria-stabilized zirconia single crystals with different planes[J]. ACS Applied Materials & Interfaces, 14, 39591-39600(2022).
[10] Du K, Li X W, Yang B D et al. Research progress of femtosecond laser microhole drilling on non-metallic materials[J]. Laser & Optoelectronics Progress, 57, 111417(2020).
[11] Qiu Z L, Jiang L, Hu J et al. High-quality micropore drilling by using orthogonally polarized femtosecond double-pulse bursts[J]. Applied Surface Science, 613, 156033(2023).
[12] Li L F, Zhang L R, Xu L Q et al. Research progress on femtosecond laser fabrication of nonlinear photonic crystals[J]. Chinese Journal of Lasers, 50, 0802401(2023).
[13] Wang Y M, Guan Y C. Progress in preparation of medical functional surfaces by femtosecond laser-induced micro/nanostructures[J]. Chinese Journal of Lasers, 49, 1002601(2022).
[14] Ma Y L, Jiang L, Hu J E et al. Developing a versatile multiscale therapeutic platform for osteosarcoma synergistic photothermo-chemotherapy with effective osteogenicity and antibacterial capability[J]. ACS Applied Materials & Interfaces, 14, 44065-44083(2022).
[15] Wang H J, Yang T. A review on laser drilling and cutting of silicon[J]. Journal of the European Ceramic Society, 41, 4997-5015(2021).
[16] Lasemi N, Rupprechter G. Chemical and laser ablation synthesis of monometallic and bimetallic Ni-based nanoparticles[J]. Catalysts, 10, 1453(2020).
[17] Tan D Z, Zhou S F, Xu B B et al. Simple synthesis of ultra-small nanodiamonds with tunable size and photoluminescence[J]. Carbon, 62, 374-381(2013).
[18] Tan H W, An J, Chua C K et al. Metallic nanoparticle inks for 3D printing of electronics[J]. Advanced Electronic Materials, 5, 1800831(2019).
[19] Nicol J R, Dixon D, Coulter J A. Gold nanoparticle surface functionalization: a necessary requirement in the development of novel nanotherapeutics[J]. Nanomedicine, 10, 1315-1326(2015).
[20] Amirjani A, Amlashi N B, Ahmadiani Z S. Plasmon-enhanced photocatalysis based on plasmonic nanoparticles for energy and environmental solutions: a review[J]. ACS Applied Nano Materials, 6, 9085-9123(2023).
[21] Jiang Z, Shangguan W F. Rational removal of stabilizer-ligands from platinum nanoparticles supported on photocatalysts by self-photocatalysis degradation[J]. Catalysis Today, 242, 372-380(2015).
[22] Stratakis E. Nanomaterials by ultrafast laser processing of surfaces[J]. Science of Advanced Materials, 4, 407-431(2012).
[23] González-Rubio G, Guerrero-Martínez A, Liz-Marzán L M. Reshaping, fragmentation, and assembly of gold nanoparticles assisted by pulse lasers[J]. Accounts of Chemical Research, 49, 678-686(2016).
[24] Bonamy C, Pesnel S, Ben Haddada M et al. Impact of green gold nanoparticle coating on internalization, trafficking, and efficiency for photothermal therapy of skin cancer[J]. ACS Omega, 8, 4092-4105(2023).
[25] Lopez-Sanchez J A, Dimitratos N, Hammond C et al. Facile removal of stabilizer-ligands from supported gold nanoparticles[J]. Nature Chemistry, 3, 551-556(2011).
[26] Khairani I Y, Mínguez-Vega G, Doñate-Buendía C et al. Green nanoparticle synthesis at scale: a perspective on overcoming the limits of pulsed laser ablation in liquids for high-throughput production[J]. Physical Chemistry Chemical Physics, 25, 19380-19408(2023).
[27] Amendola V, Meneghetti M. Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles[J]. Physical Chemistry Chemical Physics, 11, 3805-3821(2009).
[28] Chen Y Y, Bao L R, Wang H et al. Research progress in preparation of nanoparticles by laser ablation in liquid[J]. Chinese Journal of Lasers, 48, 0600002(2021).
[29] Li S H, Zhao Y. Fabrication and properties of Au/Ag core/shell nanostructures prepared by laser ablation in liquid solutions[J]. Chinese Journal of Lasers, 41, 0706001(2014).
[30] Tarasenka N N, Kornev V G, Urmanov B D et al. Laser synthesis and optical properties of hybrid silicon nanostructures for photothermal conversion of solar radiation[J]. Journal of Applied Spectroscopy, 90, 346-357(2023).
[31] Donadelli J A, Aiello M B R, Aparicio F et al. Comparison of the (photo)catalytic efficiency of Ag/Fe nanocomposites prepared by polyol synthesis and laser ablation[J]. Journal of Nanoparticle Research, 24, 58(2022).
[32] Barcikowski S, Menéndez-Manjón A, Chichkov B et al. Generation of nanoparticle colloids by picosecond and femtosecond laser ablations in liquid flow[J]. Applied Physics Letters, 91, 083113(2007).
[33] Schnoor A, Petersen S, Barcikowski S. Laserfragmentierung von anorganischen und organischen mikropartikel-suspensionen zu nanopartikel-kolloiden[J]. Chemie Ingenieur Technik, 82, 317-326(2010).
[34] Li L, Zhou L, Shan Y G et al. Analysis of rapid melting and resolidification in femtosecond laser interaction with nanoparticle[J]. Numerical Heat Transfer, Part A: Applications, 69, 859-873(2016).
[35] Alvarez C, Garcia V, Cuando N et al. Antibacterial studies of ZnO nanoparticle coatings on nanocrystalline YSZ irradiated with femtosecond laser light[J]. Proceedings of SPIE, 10469, 104691E(2018).
[36] Chen L J, Ma H H, Chen K C et al. Synthesis and assembly of gold nanoparticle-doped polymer solid foam films at the liquid/liquid interface and their catalytic properties[J]. Journal of Colloid and Interface Science, 362, 81-88(2011).
[37] Gruzdev V E, Gruzdeva A S. Nonthermal effects in femtosecond laser damage of transparent materials[J]. Proceedings of SPIE, 4423, 295-306(2001).
[38] Tian M Y, Zuo P, Liang M S et al. Femtosecond laser processing of low-dimensional nanomaterials and its application[J]. Chinese Journal of Lasers, 48, 0202004(2021).
[39] Zhang D S, Gökce B, Barcikowski S. Laser synthesis and processing of colloids: fundamentals and applications[J]. Chemical Reviews, 117, 3990-4103(2017).
[40] Gao G Q, Jiang L, Xue B F et al. Unconventional shrinkage of hot electron distribution in metal directly visualized by ultrafast imaging[J]. Small Methods, 7, 2201260(2023).
[41] Zhang K J, Liu L, Zeng Q W et al. Influence of different scattering medium on propagation characteristics to femtosecond laser pulses[J]. Acta Physica Sinica, 68, 194207(2019).
[42] Lian Y L, Jiang L, Sun J Y et al. Ultrafast quasi-three-dimensional imaging[J]. International Journal of Extreme Manufacturing, 5, 045601(2023).
[43] Sarpe-Tudoran C, Assion A, Wollenhaupt M et al. Plasma dynamics of water breakdown at a water surface induced by femtosecond laser pulses[J]. Applied Physics Letters, 88, 261109(2006).
[44] Aglyamov S R, Karpiouk A B, Bourgeois F et al. Ultrasound measurements of cavitation bubble radius for femtosecond laser-induced breakdown in water[J]. Optics Letters, 33, 1357-1359(2008).
[45] Jiang X Y, Wang F F, Zhou W et al. Ultrafast dynamics of femtosecond laser interaction with materials[J]. Chinese Journal of Lasers, 49, 2200001(2022).
[46] Gololobov V M, Kononenko V V, Kononenko T V et al. Femtosecond laser interferometry of microsized absorptive plasma[J]. Laser Physics Letters, 18, 016001(2021).
[47] Tamura A, Matsumoto A, Fukami K et al. Simultaneous observation of nascent plasma and bubble induced by laser ablation in water with various pulse durations[J]. Journal of Applied Physics, 117, 173304(2015).
[48] Sasaki K, Takada N. Liquid-phase laser ablation[J]. Pure and Applied Chemistry, 82, 1317-1327(2010).
[49] Jing C R, Wang Z H, Cheng Y. Three-dimensional micro-and nano-machining based on spatiotemporal focusing technique of femtosecond laser[J]. Laser & Optoelectronics Progress, 54, 040005(2017).
[50] Linz N, Freidank S, Liang X X et al. Wavelength dependence of femtosecond laser-induced breakdown in water, and implications for laser surgery (Conference Presentation)[J]. Proceedings of SPIE, 10094, 1009409(2017).
[51] Rethfeld B, Kaiser A, Vicanek M et al. Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation[J]. Physical Review B, 65, 214303(2002).
[52] Rethfeld B, Ivanov D S, Garcia M E et al. Modelling ultrafast laser ablation[J]. Journal of Physics D: Applied Physics, 50, 193001(2017).
[53] Rethfeld B, Sokolowski-Tinten K, von der Linde D et al. Ultrafast thermal melting of laser-excited solids by homogeneous nucleation[J]. Physical Review B, 65, 092103(2002).
[54] Shugaev M V, Wu C P, Armbruster O et al. Fundamentals of ultrafast laser-material interaction[J]. MRS Bulletin, 41, 960-968(2016).
[55] Cheng J, Liu C S, Shang S et al. A review of ultrafast laser materials micromachining[J]. Optics & Laser Technology, 46, 88-102(2013).
[56] Cheng C R, Xu X F. Mechanisms of decomposition of metal during femtosecond laser ablation[J]. Physical Review B, 72, 165415(2005).
[57] Polyakov D S, Yakovlev E B. Ultrafast electron transfer through a silicon‒vacuum interface induced by the action of an intense femtosecond laser pulse[J]. Journal of Physics D: Applied Physics, 53, 055305(2020).
[58] Ionin A A, Kudryashov S I, Makarov S V et al. Electron emission and ultrafast low-fluence plasma formation during single-shot femtosecond laser surface ablation of various materials[J]. JETP Letters, 101, 308-312(2015).
[59] Williams F, Varma S P, Hillenius S. Liquid water as a lone-pair amorphous semiconductor[J]. The Journal of Chemical Physics, 64, 1549-1554(1976).
[60] Feng Q, Moloney J V, Newell A C et al. Laser-induced breakdown versus self-focusing for focused picosecond pulses in water[J]. Optics Letters, 20, 1958-1960(1995).
[61] Vogel A, Noack J, Hüttman G et al. Mechanisms of femtosecond laser nanosurgery of cells and tissues[J]. Applied Physics B, 81, 1015-1047(2005).
[62] Jiao J, Guo Z. Modeling of ultrashort pulsed laser ablation in water and biological tissues in cylindrical coordinates[J]. Applied Physics B, 103, 195-205(2011).
[63] Milián C, Jarnac A, Brelet Y et al. Effect of input pulse chirp on nonlinear energy deposition and plasma excitation in water[J]. Journal of the Optical Society of America B, 31, 2829-2837(2014).
[64] Elles C G, Jailaubekov A E, Crowell R A et al. Excitation-energy dependence of the mechanism for two-photon ionization of liquid H2O and D2O from 8.3 to 12.4 eV[J]. The Journal of Chemical Physics, 125, 044515(2006).
[65] Bartels D M, Crowell R A. Photoionization yield vs energy in H2O and D2O[J]. The Journal of Physical Chemistry A, 104, 3349-3355(2000).
[66] Linz N, Freidank S, Liang X X et al. Wavelength dependence of nanosecond infrared laser-induced breakdown in water: evidence for multiphoton initiation via an intermediate state[J]. Physical Review B, 91, 134114(2015).
[67] Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media[J]. Physics Reports, 441, 47-189(2007).
[68] Linz N, Freidank S, Liang X X et al. Wavelength dependence of femtosecond laser-induced breakdown in water and implications for laser surgery[J]. Physical Review B, 94, 024113(2016).
[69] Pommeret S, Gobert F, Mostafavi M et al. Femtochemistry of the hydrated electron at decimolar concentration[J]. The Journal of Physical Chemistry A, 105, 11400-11406(2001).
[70] Janata E, Schuler R H. Rate constant for scavenging eaq- in N2O-saturated solutions[J]. The Journal of Physical Chemistry, 86, 2078-2084(1982).
[71] Rahn R O. Potassium iodide as a chemical actinometer for 254 nm radiation: use of lodate as an electron scavenger[J]. Photochemistry and Photobiology, 66, 450-455(1997).
[72] Nakashima N, Yamanaka K I, Saeki M et al. Metal ion reductions by femtosecond laser pulses with micro-Joule energy and their efficiencies[J]. Journal of Photochemistry and Photobiology A: Chemistry, 319/320, 70-77(2016).
[73] Meader V K, John M G, Rodrigues C J et al. Roles of free electrons and H2O2 in the optical breakdown-induced photochemical reduction of aqueous[AuCl4]–[J]. The Journal of Physical Chemistry A, 121, 6742-6754(2017).
[74] LaVerne J A, Pimblott S M. New mechanism for H2 formation in water[J]. The Journal of Physical Chemistry A, 104, 9820-9822(2000).
[75] Baxendale J H, Wardman P. Direct observation of solvation of the electron in liquid alcohols by pulse radiolysis[J]. Nature, 230, 449-450(1971).
[76] Saeki A, Kozawa T, Yoshida Y et al. Adjacent effect on positive charge transfer from radical cation of n-dodecane to scavenger studied by picosecond pulse radiolysis, statistical model, and Monte Carlo simulation[J]. The Journal of Physical Chemistry A, 108, 1475-1481(2004).
[77] Saeki A, Yamamoto N, Yoshida Y et al. Geminate charge recombination in liquid alkane with concentrated CCl4: effects of CCl4 radical anion and narrowing of initial distribution of Cl-[J]. The Journal of Physical Chemistry A, 115, 10166-10173(2011).
[78] Shkrob I A, Sauer M C. Electron localization in liquid acetonitrile[J]. The Journal of Physical Chemistry A, 106, 9120-9131(2002).
[79] Belmouaddine H, Shi M H, Karsenti P L et al. Dense ionization and subsequent non-homogeneous radical-mediated chemistry of femtosecond laser-induced low density plasma in aqueous solutions: synthesis of colloidal gold[J]. Physical Chemistry Chemical Physics, 19, 7897-7909(2017).
[80] Rodrigues C J, Bobb J A, John M G et al. Nucleation and growth of gold nanoparticles initiated by nanosecond and femtosecond laser irradiation of aqueous[AuCl4]-[J]. Physical Chemistry Chemical Physics, 20, 28465-28475(2018).
[81] Meader V K, John M G, Batista L M F et al. Radical chemistry in a femtosecond laser plasma: photochemical reduction of Ag+ in liquid ammonia solution[J]. Molecules, 23, 532(2018).
[82] Norrish R G W, Porter G. Chemical reactions produced by very high light intensities[J]. Nature, 164, 658(1949).
[83] Zewail A H. Laser femtochemistry[J]. Science, 242, 1645-1653(1988).
[84] Ramasesha K, De Marco L, Mandal A et al. Water vibrations have strongly mixed intra- and intermolecular character[J]. Nature Chemistry, 5, 935-940(2013).
[85] Ashfold M, Chergui M, Fischer I et al. Time-resolved ultrafast spectroscopy: general discussion[J]. Faraday Discussions, 228, 329-348(2021).
[86] Minardi S, Gopal A, Tatarakis M et al. Time-resolved refractive index and absorption mapping of light-plasma filaments in water[J]. Optics Letters, 33, 86-88(2007).
[87] Palianov P, Martin P, Quéré F et al. Ultrafast formation of hydrated electrons in water at high concentration: experimental evidence of the free electron[J]. Journal of Experimental and Theoretical Physics, 118, 489-493(2014).
[88] Kononenko V V, Gololobov V M, Kononenko T V et al. Comparative study of the dynamics of laser breakdown in water and hexane using interference microscopy[J]. Quantum Electronics, 51, 169-174(2021).
[89] Hayasaki Y, Isaka M, Takita A. Pump-probe digital holography for observation of femtosecond laser induced phenomena[C](2009).
[90] Alfano J C, Walhout P K, Kimura Y et al. Ultrafast transient-absorption spectroscopy of the aqueous solvated electron[J]. The Journal of Chemical Physics, 98, 5996-5998(1993).
[91] Tauber M J, Mathies R A. Fluorescence and resonance Raman spectra of the aqueous solvated electron[J]. The Journal of Physical Chemistry A, 105, 10952-10960(2001).
[92] Lam J, Amans D, Chaput F et al. γ-Al2O3 nanoparticles synthesised by pulsed laser ablation in liquids: a plasma analysis[J]. Physical Chemistry Chemical Physics, 16, 963-973(2014).
[93] Li D, Jia Z W, Tian Y et al. Investigation of laser-induced bubble dynamics in water at high hydrostatic pressures[J]. Optics Express, 29, 44105-44117(2021).
[94] Kononenko V V, Gololobov V M, Konov V I. Dynamics of optical polarizability of liquid water exposed to intense laser light[J]. Optics Letters, 45, 256-259(2019).
[95] Centurion M, Pu Y, Psaltis D. Holographic capture of femtosecond pulse propagation[J]. Journal of Applied Physics, 100, 063104(2006).
[96] Sun Y G. Watching nanoparticle kinetics in liquid[J]. Materials Today, 15, 140-147(2012).
[97] Fu X W, Chen B, Tang J et al. Photoinduced nanobubble-driven superfast diffusion of nanoparticles imaged by 4D electron microscopy[J]. Science Advances, 3, e1701160(2017).
[98] Fu X W, Chen B, Tang J et al. Imaging rotational dynamics of nanoparticles in liquid by 4D electron microscopy[J]. Science, 355, 494-498(2017).
[99] Karashima S, Yamamoto Y I, Suzuki T. Ultrafast internal conversion and solvation of electrons in water, methanol, and ethanol[J]. The Journal of Physical Chemistry Letters, 10, 4499-4504(2019).
[100] Ki H, Oang K Y, Kim J et al. Ultrafast X-ray crystallography and liquidography[J]. Annual Review of Physical Chemistry, 68, 473-497(2017).
[101] Zhang J Z. Interfacial charge carrier dynamics of colloidal semiconductor nanoparticles[J]. The Journal of Physical Chemistry B, 104, 7239-7253(2000).
[102] Ishizaka K, Kiss T, Yamamoto T et al. Femtosecond core-level photoemission spectroscopy on 1T-TaS2 using a 60-eV laser source[J]. Physical Review B, 83, 081104(2011).
[103] Kimura T, Joti Y, Shibuya A et al. Imaging live cell in micro-liquid enclosure by X-ray laser diffraction[J]. Nature Communications, 5, 3052(2014).
[104] Unger C, Koch J, Overmeyer L et al. Time-resolved studies of femtosecond-laser induced melt dynamics[J]. Optics Express, 20, 24864-24872(2012).
[105] Sarpe C, Köhler J, Winkler T et al. Real-time observation of transient electron density in water irradiated with tailored femtosecond laser pulses[J]. New Journal of Physics, 14, 075021(2012).
[106] Maiuri M, Garavelli M, Cerullo G. Ultrafast spectroscopy: state of the art and open challenges[J]. Journal of the American Chemical Society, 142, 3-15(2020).
[107] Rentzepis P M, Jones R P, Jortner J. Relaxation of excess electrons in a polar solvent[J]. Chemical Physics Letters, 15, 480-482(1972).
[108] Yokoyama K, Silva C, Son D H et al. Detailed investigation of the femtosecond pump‒probe spectroscopy of the hydrated electron[J]. The Journal of Physical Chemistry A, 102, 6957-6966(1998).
[109] Pshenichnikov M S, Baltuška A, Wiersma D A. Hydrated-electron population dynamics[J]. Chemical Physics Letters, 389, 171-175(2004).
[110] Deng Y M, Jiang L, Huang L B et al. Energy flow in hybrid organic/inorganic systems for triplet‒triplet annihilation upconversion[J]. ACS Energy Letters, 7, 847-861(2022).
[111] Bragg A E, Verlet J R R, Kammrath A et al. Electronic relaxation dynamics of water cluster anions[J]. Journal of the American Chemical Society, 127, 15283-15295(2005).
[112] Balciunas T, Melninkaitis A, Tamosauskas G et al. Time-resolved off-axis digital holography for characterization of ultrafast phenomena in water[J]. Optics Letters, 33, 58-60(2007).
[113] Winkler T, Sarpe C, Jelzow N et al. Probing spatial properties of electronic excitation in water after interaction with temporally shaped femtosecond laser pulses: experiments and simulations[J]. Applied Surface Science, 374, 235-242(2016).
[114] Siefermann K R, Liu Y X, Lugovoy E et al. Binding energies, lifetimes and implications of bulk and interface solvated electrons in water[J]. Nature Chemistry, 2, 274-279(2010).
[115] O'Shea P G, Freund H P. Free-electron lasers: status and applications[J]. Science, 292, 1853-1858(2001).
[116] Edwards G S, Allen S J, Haglund R F et al. Applications of free-electron lasers in the biological and material sciences[J]. Photochemistry and Photobiology, 81, 711-735(2005).
[117] Couprie M E, Ortéga J M. Free-electron lasers sources for scientific applications[J]. Analusis, 28, 725-736(2000).
[118] Vassholz M, Hoeppe H P, Hagemann J et al. Pump-probe X-ray holographic imaging of laser-induced cavitation bubbles with femtosecond FEL pulses[J]. Nature Communications, 12, 3468(2021).
[119] Winkler T, Haahr-Lillevang L, Sarpe C et al. Laser amplification in excited dielectrics[J]. Nature Physics, 14, 74-79(2018).
[120] Nikogosyan D N, Oraevsky A A, Rupasov V I. Two-photon ionization and dissociation of liquid water by powerful laser UV radiation[J]. Chemical Physics, 77, 131-143(1983).
[121] Silva C, Walhout P K, Yokoyama K et al. Femtosecond solvation dynamics of the hydrated electron[J]. Physical Review Letters, 80, 1086-1089(1998).
[122] Thaller A, Laenen R, Laubereau A. Femtosecond spectroscopy of the hydrated electron: novel features in the infrared[J]. Chemical Physics Letters, 398, 459-465(2004).
[123] Sakakibara N, Ito T, Terashima K et al. Dynamics of solvated electrons during femtosecond laser-induced plasma generation in water[J]. Physical Review E, 102, 053207(2020).
[124] Sakka T, Iwanaga S, Ogata Y H et al. Laser ablation at solid‒liquid interfaces: an approach from optical emission spectra[J]. The Journal of Chemical Physics, 112, 8645-8653(2000).
[125] Gavrilović M R, Lazic V, Jovićević S. Influence of the target material on secondary plasma formation underwater and its laser induced breakdown spectroscopy (LIBS) signal[J]. Journal of Analytical Atomic Spectrometry, 32, 345-353(2017).
[126] Kumar B, Thareja R K. Laser ablated copper plasmas in liquid and gas ambient[J]. Physics of Plasmas, 20, 053503(2013).
[127] Chemin A, Lam J, Laurens G et al. Doping nanoparticles using pulsed laser ablation in a liquid containing the doping agent[J]. Nanoscale Advances, 1, 3963-3972(2019).
[128] de Giacomo A, Dell'Aglio M, Bruno D et al. Experimental and theoretical comparison of single-pulse and double-pulse laser induced breakdown spectroscopy on metallic samples[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 63, 805-816(2008).
[129] Takada N, Nakano T, Sasaki K. Influence of additional external pressure on optical emission intensity in liquid-phase laser ablation[J]. Applied Surface Science, 255, 9572-9575(2009).
[130] Kim K K, Roy M, Kwon H et al. Laser ablation dynamics in liquid phase: the effects of magnetic field and electrolyte[J]. Journal of Applied Physics, 117, 074302(2015).
[131] Maatz G, Heisterkamp A, Lubatschowski H et al. Chemical and physical side effects at application of ultrashort laser pulses for intrastromal refractive surgery[J]. Journal of Optics A: Pure and Applied Optics, 2, 59-64(2000).
[132] Sasaki K, Nakano T, Soliman W et al. Effect of pressurization on the dynamics of a cavitation bubble induced by liquid-phase laser ablation[J]. Applied Physics Express, 2, 046501(2009).
[133] Ibrahimkutty S, Wagener P, Menzel A et al. Nanoparticle formation in a cavitation bubble after pulsed laser ablation in liquid studied with high time resolution small angle X-ray scattering[J]. Applied Physics Letters, 101, 103104(2012).
[134] Zhang T Y, Guo B S, Jiang L et al. Single-shot multi-frame imaging of femtosecond laser-induced plasma propagation[J]. Materials, 16, 3264(2023).
[135] Tang H C, Marquez M, Men T et al. Temporal resolution of ultrafast compressive imaging using a single-chirped optical probe[J]. Optics Letters, 48, 6080-6083(2023).
[136] Lee J H, Ihee H. Advantages of time-resolved difference X-ray solution scattering curves in analyzing solute molecular structure[J]. Structural Chemistry, 21, 37-42(2010).
[137] Jordan I, Huppert M, Hartweg S et al. Ultrafast time-resolved photoelectron spectroscopy of solvated systems[J]. Journal of Physics: Conference Series, 635, 112127(2015).
Get Citation
Copy Citation Text
Zikang Su, Shilong Yuan, Xianglong Li, Xueqiang Zhang. Prospects for Ultrafast Observation of Femtosecond Laser Ablation in Liquid(Invited)[J]. Chinese Journal of Lasers, 2024, 51(4): 0402402
Category: Laser Micro-Nano Manufacturing
Received: Oct. 19, 2023
Accepted: Nov. 27, 2023
Published Online: Jan. 17, 2024
The Author Email: Li Xianglong (xueqiangzhangme@bit.edu.cn), Zhang Xueqiang (lixianglong@tsinghua.edu.cn)
CSTR:32183.14.CJL231301