Journal of the Chinese Ceramic Society, Volume. 53, Issue 6, 1728(2025)
Research Progress on Halide Electrolytes and Their Interfaces
[1] [1] JANEK J, ZEIER W G. Challenges in speeding up solid-state battery development[J]. Nat Energy, 2023, 8: 230–240.
[2] [2] WANG M J, KAZYAK E, DASGUPTA N P, et al. Transitioning solid-state batteries from lab to market: Linking electro-chemo-mechanics with practical considerations[J]. Joule, 2021, 5(6): 1371–1390.
[3] [3] LI X N, LIANG J W, YANG X F, et al. Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries[J]. Energy Environ Sci, 2020, 13(5): 1429–1461.
[4] [4] KANNO R, TAKEDA Y, TAKADA K, et al. Phase diagram and ionic conductivity of the lithium chloride-iron(II) chloride system[J]. Solid State Ion, 1983, 9: 153–156.
[5] [5] KANNO R, TAKEDA Y, TAKADA K, et al. Ionic conductivity and phase transition of the spinel system Li2 – 2x M 1 + x Cl4 ( M = Mg , Mn , Cd )[J]. J Electrochem Soc, 131(3): 469–474.
[6] [6] KANNO R, TAKEDA Y, TAKAHASHI A, et al. Structure, ionic conductivity, and phase transformation in new polymorphs of the double chloride spinel, Li2FeCl4[J]. J Solid State Chem, 1988, 72(2): 363–375.
[7] [7] KANNO R, TAKEDA Y, TAKAHASHI A, et al. New double chloride in the LiCl,CoCl2 system: I. preparation, crystal structure, phase transformation, and ionic conductivity of Li6CoCl8[J]. J Solid State Chem, 1987, 71(1): 189–195.
[8] [8] KANNO R, TAKEDA Y, YAMAMOTO O. Ionic conductivity of solid lithium ion conductors with the spinel structure: Li2MCl4 (M = Mg, Mn, Fe, Cd)[J]. Mater Res Bull, 1981, 16(8): 999–1005.
[9] [9] LUTZ H, WUSSOW K, KUSKE P. Ionic conductivity, structural, IR and Raman spectroscopic data of olivine, Sr2PbO4, and Na2CuF4 type lithium and sodium chlorides Li2ZnCl4 and Na2MCl4 (M = Mg, Ti, Cr, Mn, co, Zn, Cd)[J]. Z Naturforsch B, 1988, 42: 1379–1386.
[10] [10] LUTZ H D, PFITZNER A, COCKCROFT J K. Structural phase transition and nonstoichiometry of Li2FeCl4: Neutron diffraction studies[J]. J Solid State Chem, 1993, 107(1): 245–249.
[11] [11] LUTZ H D, SCHMIDT W, HAEUSELER H. Zur kenntnis der chlorid-spinelle Li2MgCl4, Li2MnCl4, Li2FeCl4, Li2CdCl4[J]. Zeitschrift Anorg Allge Chemie, 1979, 453(1): 121–126.
[12] [12] LUTZ H D, SCHMIDT W, HAEUSELER H. Chloride spinels: A new group of solid lithium electrolytes[J]. J Phys Chem Solids, 1981, 42(4): 287–289.
[13] [13] PFITZNER A, CROCKCROFT J K, SOLINAS I, et al. Neue halogenozinkate(II) MZnX4 (MI = Li, Na; X = Cl, Br) mit olivinstruktur[J]. Zeitschrift Anorg Allge Chemie, 1993, 619(6): 993–998.
[14] [14] KANNO R, TAKEDA Y, YAMAMOTO O. Structure, ionic conductivity and phase transformation of double chloride spinels[J]. Solid State Ion, 1988, 28: 1276–1281.
[15] [15] LUTZ H D, KUSKE P, WUSSOW K. Neue lithiumchlorid- suzukiphasen: Li6MCl8(M = Fe, Co, Ni)[J]. Zeitschrift Anorg Allge Chemie, 1987, 553(10): 172–178.
[16] [16] SCHNEIDER M, KUSKE P, LUTZ H D. Kristallstrukturen von Li6MgBr8 und Li2MgBr4/crystal structure of Li6MgBr8 and Li2MgBr4[J]. Zeitschrift fr Naturforschung B, 1993, 48: 1–6.
[17] [17] KAJIYAMA A, TAKADA K, INADA T, et al. Electrochemical deintercalation of lithium ions from lithium iron chloride spinel[J]. Solid State Ion, 2002, 152: 295–302.
[18] [18] WANG C H, LIANG J W, KIM J T, et al. Prospects of halide-based all-solid-state batteries: From material design to practical application[J]. Sci Adv, 2022, 8(36): eadc9516.
[19] [19] ASANO T, SAKAI A, OUCHI S, et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries[J]. Adv Mater, 2018, 30(44): e1803075.
[20] [20] WANG S, BAI Q, NOLAN A M, et al. Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability[J]. Angew Chem Int Ed, 2019, 58(24): 8039–8043.
[21] [21] YAMADA K, KUMANO K, OKUDA T. Lithium superionic conductors Li3InBr6 and LiInBr4 studied by 7Li, 115In NMR[J]. Solid State Ion, 2006, 177(19–25): 1691–1695.
[22] [22] LI X N, LIANG J W, CHEN N, et al. Water-mediated synthesis of a superionic halide solid electrolyte[J]. Angew Chem Int Ed, 2019, 58(46): 16427–16432.
[23] [23] SCHLEM R, MUY S, PRINZ N, et al. Mechanochemical synthesis: A tool to tune cation site disorder and ionic transport properties of Li3MCl6 (M = Y, Er) superionic conductors[J]. Adv Energy Mater, 2020, 10(6): 1903719.
[24] [24] LIANG J W, LI X N, WANG S, et al. Site-occupation-tuned superionic LixScCl3+xHalide solid electrolytes for all-solid-state batteries[J]. J Am Chem Soc, 2020, 142(15): 7012–7022.
[25] [25] ZHOU L D, KWOK C Y, SHYAMSUNDER A, et al. A new halospinel superionic conductor for high-voltage all solid state lithium batteries[J]. Energy Environ Sci, 2020, 13(7): 2056–2063.
[26] [26] FU J M, WANG S, LIANG J W, et al. Superionic conducting halide frameworks enabled by interface-bonded halides[J]. J Am Chem Soc, 2023, 145(4): 2183–2194.
[27] [27] LIU Z T, MA S, LIU J, et al. High ionic conductivity achieved in Li3Y(Br3Cl3) mixed halide solid electrolyteviapromoted diffusion pathways and enhanced grain boundary[J]. ACS Energy Lett, 2021, 6(1): 298–304.
[28] [28] ZHOU L D, ZUO T T, KWOK C Y, et al. High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes[J]. Nat Energy, 2022, 7: 83–93.
[29] [29] YIN Y C, YANG J T, LUO J D, et al. A LaCl3-based lithium superionic conductor compatible with lithium metal[J]. Nature, 2023, 616(7955): 77–83.
[30] [30] LI X N, XU Y, ZHAO C T, et al. The universal super cation-conductivity in multiple-cation mixed chloride solid-state electrolytes[J]. Angew Chem Int Ed, 2023, 62(48): e202306433.
[31] [31] LI D Y, YU D F, ZHANG G W, et al. High configuration entropy promises electrochemical stability of chloride electrolytes for high-energy, long-life all-solid-state batteries[J]. Angew Chem Int Ed, 2025, 64(7): e202419735.
[32] [32] SONG Z Y, WANG T R, YANG H, et al. Promoting high-voltage stability through local lattice distortion of halide solid electrolytes[J]. Nat Commun, 2024, 15(1): 1481.
[33] [33] WANG K, REN Q Y, GU Z Q, et al. A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries[J]. Nat Commun, 2021, 12(1): 4410.
[34] [34] LI F, CHENG X B, LU L L, et al. Stable all-solid-state lithium metal batteries enabled by machine learning simulation designed halide electrolytes[J]. Nano Lett, 2022, 22(6): 2461–2469.
[35] [35] PARK D, PARK H, LEE Y, et al. Theoretical design of lithium chloride superionic conductors for all-solid-state high-voltage lithium-ion batteries[J]. ACS Appl Mater Interfaces, 2020, 12(31): 34806–34814.
[36] [36] PARK K H, KAUP K, ASSOUD A, et al. High-voltage superionic halide solid electrolytes for all-solid-state Li-ion batteries[J]. ACS Energy Lett, 2020, 5(2): 533–539.
[37] [37] KWAK H, HAN D, LYOO J, et al. New cost-effective halide solid electrolytes for all-solid-state batteries: Mechanochemically prepared Fe3+-substituted Li2ZrCl6[J]. Adv Energy Mater, 2021, 11(12): 2003190.
[38] [38] PARK J, HAN D, KWAK H, et al. Heat treatment protocol for modulating ionic conductivityviastructural evolution of Li3–xYb1–xMxCl6 (M = Hf4+, Zr4+) new halide superionic conductors for all-solid-state batteries[J]. Chem Eng J, 2021, 425: 130630.
[39] [39] SOUQUET J L. Ionic transport in amorphous solid electrolytes[J]. Annu Rev Mater Sci, 1981, 11: 211–231.
[40] [40] ANGELL C. Mobile ions in amorphous solids[J]. Annu Rev Phys Chem, 43: 693–717.
[41] [41] HU Y, FU J M, XU J B, et al. Superionic amorphous NaTaCl6 halide electrolyte for highly reversible all-solid-state Na-ion batteries[J]. Matter, 2024, 7(3): 1018–1034.
[42] [42] CHAUPATNAIK A, ROUSSE G, PEREZ A J, et al. Synthesis, structure, and electrochemistry of crystallized layered chlorides, LiMCl6 (M = Ta/Nb)[J]. Adv Energy Mater, 2024, 14(45): 2402555.
[43] [43] ISHIGURO Y, UENO K, NISHIMURA S, et al. TaCl5-glassified ultrafast lithium ion-conductive halide electrolytes for high-performance all-solid-state lithium batteries[J]. Chem Lett, 2023, 52(4): 237–241.
[44] [44] LI F, CHENG X B, LU G X, et al. Amorphous chloride solid electrolytes with high Li-ion conductivity for stable cycling of all-solid-state high-nickel cathodes[J]. J Am Chem Soc, 2023, 145(50): 27774–27787.
[45] [45] TANAKA Y, UENO K, MIZUNO K, et al. New oxyhalide solid electrolytes with high lithium ionic conductivity >10 mS·cm–1 for all-solid-state batteries[J]. Angew Chem Int Ed, 2023, 62(13): e202217581.
[46] [46] ZHANG S M, ZHAO F P, CHEN J T, et al. A family of oxychloride amorphous solid electrolytes for long-cycling all-solid-state lithium batteries[J]. Nat Commun, 2023, 14(1): 3780.
[47] [47] ZHAO Y S, DAEMEN L L. Superionic conductivity in lithium-rich anti-perovskites[J]. J Am Chem Soc, 2012, 134(36): 15042–15047.
[48] [48] KOEDTRUAD A, PATINO M A, ICHIKAWA N, et al. Crystal structures and ionic conductivity in Li2OHX (X = Cl, Br) antiperovskites[J]. J Solid State Chem, 2020, 286: 121263.
[49] [49] LI W H, LI M S, CHIEN P H, et al. Lithium-compatible and air-stable vacancy-rich Li9N2Cl3 for high-areal capacity, long-cycling all-solid-state lithium metal batteries[J]. Sci Adv, 2023, 9(42): eadh4626.
[50] [50] L X J, WU G, HOWARD J W, et al. Li-rich anti-perovskite Li3OCl films with enhanced ionic conductivity[J]. Chem Commun, 2014, 50(78): 11520–11522.
[51] [51] L X J, HOWARD J W, CHEN A P, et al. Antiperovskite Li3OCl superionic conductor films for solid-state Li-ion batteries[J]. Adv Sci, 2016, 3(3): 1500359.
[52] [52] ZHU J L, LI S, ZHANG Y, et al. Enhanced ionic conductivity with Li7O2Br3 phase in Li3OBr anti-perovskite solid electrolyte[J]. 2016, 109(10): 101904.
[53] [53] HOOD Z D, WANG H, SAMUTHIRA PANDIAN A, et al. Li2OHCl crystalline electrolyte for stable metallic lithium anodes[J]. J Am Chem Soc, 2016, 138(6): 1768–1771.
[54] [54] HANGHOFER I, REDHAMMER G J, ROHDE S, et al. Untangling the structure and dynamics of lithium-rich anti-perovskites envisaged as solid electrolytes for batteries[J]. Chem Mater, 2018, 30(22): 8134–8144.
[55] [55] SONG A Y, XIAO Y R, TURCHENIUK K, et al. Protons enhance conductivities in lithium halide hydroxide/lithium oxyhalide solid electrolytes by forming rotating hydroxy groups[J]. Adv Energy Mater, 2018, 8(3): 1700971.
[56] [56] KANNO R, TAKEDA Y, MORI M, et al. Ionic conductivity and structure of double chloride Li2ZnCl4 in the LiCl–ZnCl2 system[J]. Chem Lett, 1989, 18(2): 223–226.
[57] [57] KIM S Y, KAUP K, PARK K H, et al. Lithium ytterbium-based halide solid electrolytes for high voltage all-solid-state batteries[J]. ACS Mater Lett, 2021, 3(7): 930–938.
[58] [58] ITO H, SHITARA K, WANG Y M, et al. Kinetically stabilized cation arrangement in Li3YCl6 superionic conductor during solid-state reaction[J]. Adv Sci, 2021, 8(15): e2101413.
[59] [59] LI X N, LIANG J W, LUO J, et al. Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries[J]. Energy Environ Sci, 2019, 12(9): 2665–2671.
[60] [60] SCHLEM R, BERNGES T, LI C, et al. Lattice dynamical approach for finding the lithium superionic conductor Li3ErI6[J]. ACS Appl Energy Mater, 2020, 3(4): 3684–3691.
[61] [61] GOMBOTZ M, WILKENING H M R. Fast Li ion dynamics in the mechanosynthesized nanostructured form of the solid electrolyte Li3YBr6[J]. ACS Sustainable Chem Eng, 2021, 9(2): 743–755.
[62] [62] SCHLEM R, BANIK A, OHNO S, et al. Insights into the lithium sub-structure of superionic conductors Li3YCl6 and Li3YBr6[J]. Chem Mater, 2021, 33(1): 327–337.
[63] [63] SEBTI E, EVANS H A, CHEN H N, et al. Stacking faults assist lithium-ion conduction in a halide-based superionic conductor[J]. J Am Chem Soc, 2022, 144(13): 5795–5811.
[64] [64] SHAO Q N, YAN C H, GAO M X, et al. New insights into the effects of Zr substitution and carbon additive on Li3–xEr1–xZrxCl6 halide solid electrolytes[J]. ACS Appl Mater Interfaces, 2022, 14(6): 8095–8105.
[65] [65] YU C, LI Y, ADAIR K R, et al. Tuning ionic conductivity and electrode compatibility of Li3YBr6 for high-performance all solid-state Li batteries[J]. Nano Energy, 2020, 77: 105097.
[66] [66] WANG C H, LIANG J W, JIANG M, et al. Interface-assistedin situgrowth of halide electrolytes eliminating interfacial challenges of all-inorganic solid-state batteries[J]. Nano Energy, 2020, 76: 105015.
[67] [67] SHI X M, ZENG Z C, SUN M Z, et al. Fast Li-ion conductor of Li3HoBr6 for stable all-solid-state lithium-sulfur battery[J]. Nano Lett, 2021, 21(21): 9325–9331.
[68] [68] WANG C H, LIANG J W, LUO J, et al. A universal wet-chemistry synthesis of solid-state halide electrolytes for all-solid-state lithium-metal batteries[J]. Sci Adv, 2021, 7(37): eabh1896.
[69] [69] LIU H W, LIN C C, CHANG P Y, et al. Reducing oxy-contaminations for enhanced Li-ion conductivity of halide-based solid electrolyte in water-mediated synthesis[J]. J Solid State Electrochem, 2022, 26(9): 2089–2096.
[70] [70] LUO X M, CAI D, WANG X L, et al. A novel ethanol-mediated synthesis of superionic halide electrolytes for high-voltage all-solid- state lithium-metal batteries[J]. ACS Appl Mater Interfaces, 2022, 14(26): 29844–29855.
[71] [71] MA T H, WANG Z X, WU D X, et al. High-areal-capacity and long-cycle-life all-solid-state battery enabled by freeze drying technology[J]. Energy Environ Sci, 2023, 16(5): 2142–2152.
[72] [72] BONSU J O, BHADRA A, KUNDU D P. Wet chemistry route to Li3InCl6: Microstructural control render high ionic conductivity and enhanced all-solid-state battery performance[J]. Adv Sci, 2024, 11(34): e2403208.
[73] [73] MNTYMKI M, MIZOHATA K, HEIKKIL M J, et al. Studies on Li3AlF6 thin film deposition utilizing conversion reactions of thin films[J]. Thin Solid Films, 2017, 636: 26–33.
[74] [74] XIE J, SENDEK A D, CUBUK E D, et al. Atomic layer deposition of stable LiAlF4 lithium ion conductive interfacial layer for stable cathode cycling[J]. ACS Nano, 2017, 11(7): 7019–7027.
[75] [75] TUO K Y, SUN C W, LIU S Q. Recent progress in and perspectives on emerging halide superionic conductors for all-solid-state batteries[J]. Electrochem Energy Rev, 2023, 6(1): 17.
[76] [76] WANG S H, XU X W, CUI C, et al. Air sensitivity and degradation evolution of halide solid state electrolytes upon exposure[J]. Adv Funct Mater, 2022, 32(7): 2108805.
[77] [77] LUO X M, HU X Y, ZHONG Y, et al. Degradation evolution for Li2ZrCl6 electrolytes in humid air and enhanced air stabilityviaeffective indium substitution[J]. Small, 2024, 20(10): 2306736.
[78] [78] USAMI T, TANIBATA N, TAKEDA H, et al. Influence of atmospheric moisture on the gas evolution tolerance of halide solid electrolytes[J]. J Solid State Electrochem, 2024, 28(12): 4427–4436.
[79] [79] KIM K T, WOO J, KIM Y S, et al. Ultrathin superhydrophobic coatings for air-stable inorganic solid electrolytes: Toward dry room application for all-solid-state batteries[J]. Adv Energy Mater, 2023, 13(43): 2301600.
[80] [80] LI X N, LIANG J W, ADAIR K R, et al. Origin of superionic Li3Y1–xInxCl6 halide solid electrolytes with high humidity tolerance[J]. Nano Lett, 2020, 20(6): 4384–4392.
[81] [81] CHEN X, JIA Z Q, LV H M, et al. Improved stability against moisture and lithium metal by doping F into Li3InCl6[J]. J Power Sources, 2022, 545: 231939.
[82] [82] TANG W, XIA W, HUSSAIN F, et al. A dual-halogen electrolyte for protective-layer-free all-solid-state lithium batteries[J]. J Power Sources, 2023, 568: 232992.
[83] [83] WANG Q T, MA X F, LIU Q, et al. Fluorine-doped Li3InCl6 to enhance ionic conductivity and air stability[J]. J Alloys Compd, 2023, 969: 172479.
[84] [84] PAPAKYRIAKOU M, LU M, LIU Y, et al. Mechanical behavior of inorganic lithium-conducting solid electrolytes[J]. J Power Sources, 2021, 516: 230672.
[85] [85] KE X Y, WANG Y, REN G F, et al. Towards rational mechanical design of inorganic solid electrolytes for all-solid-state lithium ion batteries[J]. Energy Storage Mater, 2020, 26: 313–324.
[86] [86] KIM K, PARK D, JUNG H G, et al. Material design strategy for halide solid electrolytes Li3MX6 (X = Cl, Br, and I) for all-solid-state high-voltage Li-ion batteries[J]. Chem Mater, 2021, 33(10): 3669–3677.
[87] [87] REN Y, SUN C J, LIU J J, et al. Effect of the mechanical strength on the ion transport in a transition metal lithium halide electrolyte: First- principle calculations[J]. Mater Today Commun, 2022, 33: 104570.
[88] [88] DAI T, WU S Y, LU Y X, et al. Inorganic glass electrolytes with polymer-like viscoelasticity[J]. Nat Energy, 2023, 8: 1221–1228.
[89] [89] HU L, WANG J Z, WANG K, et al. A cost-effective, ionically conductive and compressible oxychloride solid-state electrolyte for stable all-solid-state lithium-based batteries[J]. Nat Commun, 2023, 14(1): 3807.
[90] [90] ZHANG S, ZHAO F, CHANG L Y, et al. Amorphous oxyhalide matters for achieving lithium superionic conduction[J]. J Am Chem Soc, 2024, 146(5): 2977–2985.
[91] [91] LEE K, KIM S, PARK J, et al. Selection of binder and solvent for solution-processed all-solid-state battery[J]. J Electrochem Soc, 2017, 164(9): A2075–A2081.
[92] [92] WANG K, YE Q, ZHANG J, et al. Halide electrolyte Li3InCl6-based all-solid-state lithium batteries with slurry-coated LiNi0.8Co0.1Mn0.1O2 composite cathode: Effect of binders[J]. Front Mater, 2021, 8: 727617.
[93] [93] TAN D H S, BANERJEE A, DENG Z, et al. Enabling thin and flexible solid-state composite electrolytes by the scalable solution process[J]. ACS Appl Energy Mater, 2019, 2(9): 6542–6550.
[94] [94] NIKODIMOS Y, HUANG C J, TAKLU B W, et al. Chemical stability of sulfide solid-state electrolytes: Stability toward humid air and compatibility with solvents and binders[J]. Energy Environ Sci, 2022, 15(3): 991–1033.
[95] [95] WANG C H, YU R Z, DUAN H, et al. Solvent-free approach for interweaving freestanding and ultrathin inorganic solid electrolyte membranes[J]. ACS Energy Lett, 2022, 7(1): 410–416.
[96] [96] WANG S H, LIAO Y Q, LI S Y, et al. Ultrathin all-inorganic halide solid-state electrolyte membranes for all-solid-state Li-ion batteries[J]. Adv Energy Mater, 2024, 14(6): 2303641.
[97] [97] LI L, YAO J M, XU R N, et al. Highly stable and encapsulation- microstructural cathode derived by self-pressurization behavior in Na-halides-based all-solid-state batteries[J]. Energy Storage Mater, 2023, 63: 103016.
[98] [98] KOCHETKOV I, ZUO T T, RUESS R, et al. Different interfacial reactivity of lithium metal chloride electrolytes with high voltage cathodes determines solid-state battery performance[J]. Energy Environ Sci, 2022, 15(9): 3933–3944.
[99] [99] WANG Z, TAN J W, JIA Z H, et al. Deciphering chemical/electrochemical compatibility of Li3InCl6 in 5.2 V high-voltage LiCoO2 all-solid-state batteries[J]. ACS Energy Lett, 2024, 9(9): 4485–4492.
[100] [100] LI F, WU Y C, CHENG X B, et al. Unraveling the interfacial compatibility of ultrahigh nickel cathodes and chloride solid electrolyte for stable all-solid-state lithium batteries[J]. Energy Environ Sci, 2024, 17(12): 4187–4195.
[101] [101] ZHAO F P, ZHANG S M, WANG S, et al. Revealing unprecedented cathode interface behavior in all-solid-state batteries with oxychloride solid electrolytes[J]. Energy Environ Sci, 2024, 17(12): 4055–4063.
[102] [102] ZHANG S M, ZHAO F P, WANG S, et al. Advanced high-voltage all-solid-state Li-ion batteries enabled by a dual-halogen solid electrolyte[J]. Adv Energy Mater, 2021, 11(32): 2100836.
[103] [103] ZHOU X, CHANG C Y, YU D F, et al. Li2ZrF6 protective layer enabled high-voltage LiCoO2 positive electrode in sulfide all-solid-state batteries[J]. Nat Commun, 2025, 16: 112.
[104] [104] FU Y Y, MA C. Interplay between Li3YX6 (X = Cl or Br) solid electrolytes and the Li metal anode[J]. Sci China Mater, 2021, 64(6): 1378–1385.
[105] [105] RIEGGER L M, SCHLEM R, SANN J, et al. Lithium-metal anode instability of the superionic halide solid electrolytes and the implications for solid-state batteries[J]. Angew Chem Int Ed, 2021, 60(12): 6718–6723.
[106] [106] SAMANTA S, BERA S, BISWAS R K, et al. Ionocovalency of the central metal halide bond-dependent chemical compatibility of halide solid electrolytes with Li6PS5Cl[J]. ACS Energy Lett, 2024, 9(8): 3683–3693.
[107] [107] ROSENBACH C, WALTHER F, RUHL J, et al. Visualizing the chemical incompatibility of halide and sulfide-based electrolytes in solid-state batteries[J]. Adv Energy Mater, 2023, 13(6): 2203673.
[108] [108] KO T, HALLOT M, QUEMIN E, et al. Toward optimization of the chemical/electrochemical compatibility of halide solid electrolytes in all-solid-state batteries[J]. ACS Energy Lett, 2022, 7(9): 2979–2987.
[109] [109] KWAK H, KIM J S, HAN D, et al. Boosting the interfacial superionic conduction of halide solid electrolytes for all-solid-state batteries[J]. Nat Commun, 2023, 14(1): 2459.
[110] [110] YU T W, LIANG J W, LUO L, et al. Superionic fluorinated halide solid electrolytes for highly stable Li-metal in all-solid-state Li batteries[J]. Adv Energy Mater, 2021, 11(36): 2101915.
[111] [111] XU X W, DU G F, CUI C, et al. Stabilizing the halide solid electrolyte to lithium by a -Li3N interfacial layer[J]. ACS Appl Mater Interfaces, 2022, 14(35): 39951–39958.
[112] [112] ZHANG S M, ZHAO F P, SU H, et al. Cubic iodide LixYI3+x superionic conductors through defect manipulation for all-solid-state Li batteries[J]. Angew Chem Int Ed, 2024, 63(12): e202316360.
Get Citation
Copy Citation Text
DENG Yuxi, LUO Yuanyuan, QIN Zihao, YANG Yong. Research Progress on Halide Electrolytes and Their Interfaces[J]. Journal of the Chinese Ceramic Society, 2025, 53(6): 1728
Category:
Received: Jan. 21, 2025
Accepted: Jul. 11, 2025
Published Online: Jul. 11, 2025
The Author Email: YANG Yong (yyang@xmu.edu.cn)