Optical Technique, Volume. 48, Issue 4, 385(2022)
Phase unwrapping method incorporating attention mechanism
[1] [1] Schmidhuber, Jürgen. Deep learning in neural networks: An overview[J]. Neural Netw,2015,61:85-117.
[2] [2] Wang D, Liu K, Zhang X. A generic indirect deep learning approach for multisensor degradation modeling[J]. IEEE Transactions on Automation Science and Engineering,2021,(99):1-17.
[3] [3] Love E R, Filippenko B, Maroulas V, et al. Topological invariant prediction via deep learning[J]. Journal of the Korean Physical Society,2020,76(5):401-405.
[4] [4] Alzubaidi L, Zhang J, Humaidi A J, et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions[J]. Journal of Big Data,2021,8(1):53-60.
[5] [5] Zhang G, Tian G, Shen Z, et al. Fast phase retrieval in off-axis digital holographic microscopy through deep learning[J]. Optics Express,2018,26(15):19388-19400.
[6] [6] Huang L, Liu T, Yang X, et al. Holographic image reconstruction with phase recovery and auto focusing using recurrent neural networks[J]. Electrical Engineering and Systems Science, 2021,8(6):1763-1774.
[7] [7] Wang K, Dou J, Qian K, et al. Y-Net: a one-to-two deep learning framework for digital holographic reconstruction[J]. Optics Letters,2019,44(19):4765.
[8] [8] Rivenson Y, Liu T, Wei Z, et al. PhaseStain: Deep learning-based histological staining of quantitative phase images[C]∥ 2019 Conference on Lasers and Electro-Optics (CLEO).SAN Jose,Calif,USA:IEEE,2019:5-10.
[9] [9] Huang L, Yan L, Chen B. Phase restoration of digital holographic microscopy with an adaptive reliability mask for phase unwrapping in microstructure testing[J]. Optics and Lasers in Engineering,2021,138:106416.
[15] [15] Spoorthi G E, Gorthi S, Gorthi R K S S. Phasenet: A deep convolutional neural network for two-dimensional phase unwrapping[J]. IEEE Signal Processing Letters,2018,26(1):54-58.
[16] [16] Dardikman G, Shaked N T. Phase unwrapping using residualneural networks[C]∥Computational Optical Sensing and Imaging. New York, USA: IEEE,2018:1-2.
[17] [17] Wang K, Li Y, Kemao Q, et al. One-step robust deep learning phase unwrapping[J]. Optics Express,2019,27: 15100.
[18] [18] Zhou H Y, Cheng C L, Peng H, et,al. The Phu-Net: A robust phase unwrapping method for MRI based on deep learning.[J]. Magnetic Resonance in Medicine,2021,86(6):3321-3333.
[21] [21] Hossain S. Plant leaf disease recognition using Depth-wise separable Convolution-based models[J]. Symmetry,2021,13(3):511.
[22] [22] Zhang Q, Wang Z, Wang B, et al. Feature extraction of laser machining data by using deep Multi-task learning[J]. Information (Switzerland),2020,11(8):378.
Get Citation
Copy Citation Text
WANG Shuo, WANG Huaying, WANG Xue, PEI Ruijing, WANG Jieyu, WANG Wenjian, LEI Jialiang, ZHANG Zijian. Phase unwrapping method incorporating attention mechanism[J]. Optical Technique, 2022, 48(4): 385