Optical Technique, Volume. 48, Issue 4, 385(2022)

Phase unwrapping method incorporating attention mechanism

WANG Shuo1, WANG Huaying1,2, WANG Xue1,2, PEI Ruijing1, WANG Jieyu1, WANG Wenjian1, LEI Jialiang1, and ZHANG Zijian1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(16)

    [1] [1] Schmidhuber, Jürgen. Deep learning in neural networks: An overview[J]. Neural Netw,2015,61:85-117.

    [2] [2] Wang D, Liu K, Zhang X. A generic indirect deep learning approach for multisensor degradation modeling[J]. IEEE Transactions on Automation Science and Engineering,2021,(99):1-17.

    [3] [3] Love E R, Filippenko B, Maroulas V, et al. Topological invariant prediction via deep learning[J]. Journal of the Korean Physical Society,2020,76(5):401-405.

    [4] [4] Alzubaidi L, Zhang J, Humaidi A J, et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions[J]. Journal of Big Data,2021,8(1):53-60.

    [5] [5] Zhang G, Tian G, Shen Z, et al. Fast phase retrieval in off-axis digital holographic microscopy through deep learning[J]. Optics Express,2018,26(15):19388-19400.

    [6] [6] Huang L, Liu T, Yang X, et al. Holographic image reconstruction with phase recovery and auto focusing using recurrent neural networks[J]. Electrical Engineering and Systems Science, 2021,8(6):1763-1774.

    [7] [7] Wang K, Dou J, Qian K, et al. Y-Net: a one-to-two deep learning framework for digital holographic reconstruction[J]. Optics Letters,2019,44(19):4765.

    [8] [8] Rivenson Y, Liu T, Wei Z, et al. PhaseStain: Deep learning-based histological staining of quantitative phase images[C]∥ 2019 Conference on Lasers and Electro-Optics (CLEO).SAN Jose,Calif,USA:IEEE,2019:5-10.

    [9] [9] Huang L, Yan L, Chen B. Phase restoration of digital holographic microscopy with an adaptive reliability mask for phase unwrapping in microstructure testing[J]. Optics and Lasers in Engineering,2021,138:106416.

    [15] [15] Spoorthi G E, Gorthi S, Gorthi R K S S. Phasenet: A deep convolutional neural network for two-dimensional phase unwrapping[J]. IEEE Signal Processing Letters,2018,26(1):54-58.

    [16] [16] Dardikman G, Shaked N T. Phase unwrapping using residualneural networks[C]∥Computational Optical Sensing and Imaging. New York, USA: IEEE,2018:1-2.

    [17] [17] Wang K, Li Y, Kemao Q, et al. One-step robust deep learning phase unwrapping[J]. Optics Express,2019,27: 15100.

    [18] [18] Zhou H Y, Cheng C L, Peng H, et,al. The Phu-Net: A robust phase unwrapping method for MRI based on deep learning.[J]. Magnetic Resonance in Medicine,2021,86(6):3321-3333.

    [21] [21] Hossain S. Plant leaf disease recognition using Depth-wise separable Convolution-based models[J]. Symmetry,2021,13(3):511.

    [22] [22] Zhang Q, Wang Z, Wang B, et al. Feature extraction of laser machining data by using deep Multi-task learning[J]. Information (Switzerland),2020,11(8):378.

    Tools

    Get Citation

    Copy Citation Text

    WANG Shuo, WANG Huaying, WANG Xue, PEI Ruijing, WANG Jieyu, WANG Wenjian, LEI Jialiang, ZHANG Zijian. Phase unwrapping method incorporating attention mechanism[J]. Optical Technique, 2022, 48(4): 385

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Dec. 13, 2021

    Accepted: --

    Published Online: Jan. 20, 2023

    The Author Email:

    DOI:

    Topics