Laser & Optoelectronics Progress, Volume. 62, Issue 4, 0415007(2025)

Semantic Recognition and Segmentation of 3D Point Clouds Using Multistage Hierarchical Fusion Residual MLP

Jun Yang1,2、* and Jiachen Guo2
Author Affiliations
  • 1School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu , China
  • 2School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu , China
  • show less
    Figures & Tables(16)
    Diagram of the RM module
    Overall network diagram
    Stage 1‒4 diagram
    Stage 5‒8 diagram
    T-Net structural diagram
    Visualization of model recognition results
    Visualization of segmentation results
    Validation of effectiveness of residual connection. (a) Recognition task; (b) segmentation task
    • Table 1. Comparison of model recognition accuracy

      View table

      Table 1. Comparison of model recognition accuracy

      MethodNumber of inputsOA /%
      PointNet6100089.2
      MKConv17102494.0
      PointASNL11100092.9
      RepSurf-U18100094.7
      FPConv19100092.5
      PointNet++20100090.7
      DGCNN21100092.9
      SpiderCNN221000+normal92.4
      Point2vec(+Voting)2394.8
      Recon++(-L)24100094.8
      PAConv25100093.2
      PTV21594.2
      GBNet14100093.8
      Ours100095.1
    • Table 2. Comparison of segmentation accuracy

      View table

      Table 2. Comparison of segmentation accuracy

      MethodCls. mIoU /%Inst.mIoU /%AirplaneBagEarphoneGuitarKnifeLaptopMotorMugPistolRocket
      PointNet680.483.783.478.773.091.585.995.365.293.081.257.9
      SO-Net2684.982.877.873.590.783.994.869.194.280.953.1
      Kd-Net2782.380.174.673.590.287.294.957.486.778.151.8
      PCNN2881.885.182.480.173.291.386.095.773.294.883.351.0
      PointNet++2085.182.479.071.891.085.995.371.694.181.358.7
      SpiderCNN2282.485.383.581.076.891.187.395.870.293.582.759.7
      PointASNL1186.184.184.773.791.087.295.874.495.281.063.0
      DGCNN2182.385.284.083.474.791.287.595.766.394.981.163.5
      Ours85.186.684.283.080.192.889.096.977.895.985.166.3
    • Table 3. Effect of network depth on recognition and segmentation

      View table

      Table 3. Effect of network depth on recognition and segmentation

      Depth ofnetworkOA of recognition /%mIoU of segmentation /%
      24 layers94.284.4
      40 layers95.186.6
      56 layers93.983.2
    • Table 4. Network depth value

      View table

      Table 4. Network depth value

      Depth of network[low1,low2,low3,low4[deep1,deep2,deep3,deep4
      24 layers[1,1,1,1][1,1,1,1]
      40 layers[2,2,2,2][2,2,2,2]
      56 layers[3,3,3,3][3,3,3,3]
    • Table 5. Effect of the T-Net module on model recognition and segmentation accuracy at different network depth

      View table

      Table 5. Effect of the T-Net module on model recognition and segmentation accuracy at different network depth

      T-Net module /Embedding layerNetwork depthOA of recognition /%mIoU of segmentation /%
      T-Net module24 layers94.284.2
      Embedding layer24 layers92.783.8
      T-Net module40 layers95.186.6
      Embedding layer40 layers93.883.5
      T-Net module56 layers93.983.9
      Embedding layer56 layers92.083.6
    • Table 6. Effect of feature extraction operators Γlow and Γdeep on recognition and segmentation accuracy

      View table

      Table 6. Effect of feature extraction operators Γlow and Γdeep on recognition and segmentation accuracy

      ΓlowΓdeepOA of recognition /%mIoU of segmentation /%
      ×94.786.0
      ×94.185.2
      95.186.6
    • Table 7. Effect of expanding networks on recognition and segmentation accuracy

      View table

      Table 7. Effect of expanding networks on recognition and segmentation accuracy

      RM moduleOA of recognition /%mIoU of segmentation /%
      RM+95.386.6
      RM++95.486.7
    • Table 8. Effect of network depth on recognition and segmentation efficiency

      View table

      Table 8. Effect of network depth on recognition and segmentation efficiency

      Network depthNumber of parameters /106Training speed /(sample/s)Testing speed(sample /s)
      24 layers0.79120176
      40 layers0.9478.1140
      56 layers12.949.1112
    Tools

    Get Citation

    Copy Citation Text

    Jun Yang, Jiachen Guo. Semantic Recognition and Segmentation of 3D Point Clouds Using Multistage Hierarchical Fusion Residual MLP[J]. Laser & Optoelectronics Progress, 2025, 62(4): 0415007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: May. 13, 2024

    Accepted: Jul. 29, 2024

    Published Online: Feb. 12, 2025

    The Author Email:

    DOI:10.3788/LOP241270

    CSTR:32186.14.LOP241270

    Topics