Optical Communication Technology, Volume. 49, Issue 1, 101(2025)

Modulation format recognition method based on amplitude density characteristics

ZHOU Shunyong1,2, HU Qin1,2, LU Huan1,2, ZHANG Hangling1,2, and PENG Ziyang1,2
Author Affiliations
  • 1Sichuan Key Laboratory of Artificial Intelligence, Sichuan University of Science & Engineering, Yibin Sichuan 644000, China
  • 2School of Automation and Information Engineering, Sichuan University of Science & Engineering, Yibin Sichuan 644000, China
  • show less
    References(13)

    [1] [1] SAIF W S, ESMAIL M A, RAGHEB A M, et al. Machine learning techniques for optical performance monitoring and modulation format identification: a survey[J]. IEEE Communications Surveys & Tutorials, 2020, 22(4): 2839-2882.

    [2] [2] YANG L, XU H, BAI C, et al. Modulation format identification using graph-based 2D stokes plane analysis for elastic optical network[J]. IEEE Photonics Journal, 2021, 13(1): 1-15.

    [3] [3] ALRABEIAH M, RAGHEB A M, ALSHEBEILI S A, et al. Survey on applications of machine learning in low-cost non-coherent optical systems: potentials, challenges, and perspective[J]. Photonics, 2023, 10(6): 655-1-655-33.

    [4] [4] ZHAO Z, YANG A, GUO P, et al. A modulation format identification method based on amplitude deviation analysis of received optical communication signal[J]. IEEE Photonics Journal, 2019, 11(1): 1-7.

    [5] [5] YU X, BAI C, XU H, et al. A modified PSO assisted blind modulation format identification scheme for elastic optical networks[J]. Optics Communications, 2020, 476: 126280-1-126280-11.

    [6] [6] XU H, YANG L, YU X, et al. Blind and low-complexity modulation format identification scheme using principal component analysis of Stokes parameters for elastic optical networks[J]. Optics Express, 2020, 28(14): 20249-20263.

    [7] [7] WEI Z, ZHANG J, LI W, et al. Active learning-aided CNN-based entropy-tunable automatic modulation identification for rate-flexible coherent optical system[J]. Journal of Lightwave Technology, 2023, 41(14): 4598-4608.

    [9] [9] YANG F, BAI C, CHI X, et al. Intelligent joint multi-parameter optical performance monitoring scheme based on HT images and MT-resNet for elastic optical network[J]. Optical Fiber Technology, 2024, 82: 103599-1-103599-12.

    [10] [10] ZHAO Y, YU Z, WAN Z, et al. Low complexity OSNR monitoring and modulation format identification based on binarized neural networks[J]. Journal of Lightwave Technology, 2020, 38(6): 1314-1322.

    [11] [11] ZHAO J, LIU Y, XU T. Advanced DSP for coherent optical fiber communication[J]. Applied Sciences, 2019, 9(19): 4192-1-4192-20.

    [12] [12] KIKUCHI K. Performance analyses of polarization demultiplexing based on constant-modulus algorithm in digital coherent optical receivers[J]. Optics Express, 2011, 19(10): 9868-9880.

    [13] [13] MEHTA S, RASTEGARI M. MobileViT: light-weight, general-purpose, and mobile-friendly vision transformer[EB/OL]. [2024-06-05]. https://arxiv.org/abs/2110.02178?context=cs.

    [14] [14] LIU Y, SHAO Z, TENG Y, et al. NAM: normalization-based attention module[EB/OL]. [2024-05-23]. http://arxiv.org/abs/2111.12419?context=cs.

    Tools

    Get Citation

    Copy Citation Text

    ZHOU Shunyong, HU Qin, LU Huan, ZHANG Hangling, PENG Ziyang. Modulation format recognition method based on amplitude density characteristics[J]. Optical Communication Technology, 2025, 49(1): 101

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 14, 2024

    Accepted: Jun. 17, 2025

    Published Online: Jun. 17, 2025

    The Author Email:

    DOI:10.13921/j.cnki.issn1002-5561.2025.01.017

    Topics