Acta Optica Sinica, Volume. 41, Issue 24, 2406002(2021)
Fiber Nonlinear Impairments Compensation Based on IPCA-DNN Algorithm
[1] Winzer P J, Neilson D T, Chraplyvy A R. Fiber-optic transmission and networking: the previous 20 and the next 20 years [Invited][J]. Optics Express, 26, 24190-24239(2018).
[2] Vassilieva O, Kim I, Ikeuchi T. Enabling technologies for fiber nonlinearity mitigation in high capacity transmission systems[J]. Journal of Lightwave Technology, 37, 50-60(2019).
[3] Jordan M I, Mitchell T M. Machine learning: trends, perspectives, and prospects[J]. Science, 349, 255-260(2015).
[4] Lau A P T, Khan F N, Fan Q R et al. Application of machine learning techniques in fiber-optic communication systems. [C]∥Signal Processing in Photonic Communications 2018, July 2-5, 2018, Zurich, Switzerland. Washington, D.C.: OSA, SpW4G, 1(2018).
[5] Liu X, Chraplyvy A R, Winzer P J et al. Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit[J]. Nature Photonics, 7, 560-568(2013).
[6] Guiomar F P, Pinto A N. Simplified Volterra series nonlinear equalizer for polarization-multiplexed coherent optical systems[J]. Journal of Lightwave Technology, 31, 3879-3891(2013).
[7] Ip E. Nonlinear compensation using backpropagation for polarization-multiplexed transmission[J]. Journal of Lightwave Technology, 28, 939-951(2010).
[8] Rafique D, Zhao J, Ellis A D. Digital back-propagation for spectrally efficient WDM 112 Gbit/s PM m-ary QAM transmission[J]. Optics Express, 19, 5219-5224(2011).
[9] Zhang J F, Gao M Y, Chen W et al. Non-data-aided k-nearest neighbors technique for optical fiber nonlinearity mitigation[J]. Journal of Lightwave Technology, 36, 3564-3572(2018).
[10] Xu M, Zhang J W, Zhang H P et al. Multi-stage machine learning enhanced DSP for DP-64QAM coherent optical transmission systems. [C]∥Optical Fiber Communication Conference 2019, March 3-7, 2019, San Diego, California, United States. Washington, D.C.: OSA, M2H, 1(2019).
[11] Gao Y L. El-Sahn Z A, Awadalla A, et al. Reduced complexity nonlinearity compensation via principal component analysis and deep neural networks[C]∥2019 Optical Fiber Communications Conference and Exhibition (OFC), March 3-7, 2019, San Diego, CA, USA., 1-3(2019).
[13] Kingma D P. -12-22)[2021-05-01]. https:∥arxiv., org/abs/1412, 6980(2014).
[14] Zhang S L, Yaman F, Nakamura K et al. Field and lab experimental demonstration of nonlinear impairment compensation using neural networks[J]. Nature Communications, 10, 3033(2019).
[15] Li W P, Kong M, Yu J J. Generation of PDM-16QAM radio frequency signal based on a polarization multiplexing optical modulator[J]. Acta Optica Sinica, 40, 2306002(2020).
[16] Lin Z Y, Yang Y F, Xiang Q et al. Adaptive carrier phase recovery algorithm for probabilistically shaped signals[J]. Acta Optica Sinica, 40, 2306001(2020).
Get Citation
Copy Citation Text
Jianyu Meng, Hongbo Zhang, Min Zhang, Ju Cai, Qianwu Zhang, Honglin Zhu, Zheng Zhong. Fiber Nonlinear Impairments Compensation Based on IPCA-DNN Algorithm[J]. Acta Optica Sinica, 2021, 41(24): 2406002
Category: Fiber Optics and Optical Communications
Received: May. 6, 2021
Accepted: Jun. 28, 2021
Published Online: Nov. 30, 2021
The Author Email: Zhang Hongbo (zhanghb@cuit.edu.cn), Cai Ju (caiju@cuit.edu.cn)