Laser & Optoelectronics Progress, Volume. 57, Issue 16, 161002(2020)

Super-Resolution Reconstruction of License Plate Image Based on Gradual Back-Projection Network

Dianwei Wang1, Yuanjie Hao1、*, Ying Liu1, Yongjun Xie2, and Haijun Song2
Author Affiliations
  • 1School of Telecommunication and Information Engineering, Xi'an University of Posts & Telecommunications, Xi'an, Shaanxi 710121, China;
  • 2Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, Shaanxi 710119, China
  • show less
    Figures & Tables(11)
    Flow chart of the our algorithm
    Detection and extraction results of license plate area
    Structure of GBPN
    Structure of gradual back-projection unit. (a) Gradual up-projection unit; (b) gradual down-projection unit
    Part license plate images in the test set
    L1 losses and RPSN of different network models. (a)-(b) DBPN, GBPN-1, GBPN-11; (c)-(d) DBPN, GBPN-2, GBPN-21
    Subjective results of different super-resolution algorithms when the amplification factor is 4. (a) LR images; (b) bicubic interpolation algorithm; (c) DCSCN algorithm; (d) DBPN algorithm; (e) DBPN-GAN algorithm; (f) GBPN-11 algorithm; (g) ground images
    • Table 1. Parameters of different network structures

      View table

      Table 1. Parameters of different network structures

      NetworkDBPNGBPN-1GBPN-11GBPN-2GBPN-21
      Parameter599566682906524410536086486970
    • Table 2. Average RPSN of the test set when the amplification factor is 4unit: dB

      View table

      Table 2. Average RPSN of the test set when the amplification factor is 4unit: dB

      License plateBicubicDCSCNDBPNDBPN-GANGBPN-11GBPN-21
      Normal light29.0029.4229.8129.7229.8729.83
      Low light34.3335.1335.6935.6635.7335.67
    • Table 3. Average SSIM of the test set when the amplification factor is 4

      View table

      Table 3. Average SSIM of the test set when the amplification factor is 4

      License plateBicubicDCSCNDBPNDBPN-GANGBPN-11GBPN-21
      Normal light0.80170.83290.87750.86980.88030.8781
      Low light0.90590.92730.95740.94640.96000.9584
    • Table 4. Reconstruction times of the two algorithmsunit: ms

      View table

      Table 4. Reconstruction times of the two algorithmsunit: ms

      AlgorithmOriginal algorithmOur algorithm
      Image super-resolutionLicense plate detectionLicense plate super-resolutionTotal
      Normal light12.522.105.817.91
      Low light12.482.085.257.33
    Tools

    Get Citation

    Copy Citation Text

    Dianwei Wang, Yuanjie Hao, Ying Liu, Yongjun Xie, Haijun Song. Super-Resolution Reconstruction of License Plate Image Based on Gradual Back-Projection Network[J]. Laser & Optoelectronics Progress, 2020, 57(16): 161002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Nov. 22, 2019

    Accepted: Dec. 31, 2019

    Published Online: Aug. 5, 2020

    The Author Email: Yuanjie Hao (haoyuanjie777@163.com)

    DOI:10.3788/LOP57.161002

    Topics