OPTICS & OPTOELECTRONIC TECHNOLOGY, Volume. 19, Issue 1, 69(2021)
Research on Dense-Yolov5 Algorithm for Infrared Target Detection
[5] [5] Zhang N, Donahue J, Girshick R, et al. Part-based R-CNNs for fine-grained category detection[C]//European conference on computer vision. Springer, Cham, 2014: 834-849.
[6] [6] He K, Gkioxari. Mask r-cnn[C]//Proceedings of the IEEE international conference on computer vidion, 2017: 2961-2969.
[7] [7] Girshick R. Fast r-cnn[C]//Proceedings of the IEEE international conference on computer vision, 2015: 1440-1448.
[8] [8] Ren S, He K, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149.
[9] [9] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition, 2016: 779-788.
[10] [10] Liu W, Anguelov D, Erhan D, et al. Ssd: Single shot multibox detector[C]//European conference on computer vision. Springer, Cham, 2016: 21-37.
[11] [11] Redmon J, Farhadi A. YOLO9000: Better, Faster, Stronger[C]// IEEE Conference on Computer Vision & Pattern Recognition. IEEE, 2017:6517-6525.
[12] [12] Zhao L, Li S. Object Detection Algorithm Based on Improved YOLOv3[J]. Electronics, 2020, 9(3): 537.
[13] [13] Deng H, Cheng J, Liu T, et al. Research on iron surface crack detection algorithm based on improved YOLOv4 network[C]//Journal of Physics: Conference Series. IOP Publishing, 2020, 1631(1): 012081.
[14] [14] Wang C Y, Mark Liao H Y, Wu Y H, et al. CSPNet: A new backbone that can enhance learning capability of cnn[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020: 390-391.
[15] [15] Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition, 2017: 4700-4708.
[16] [16] Huang G, Liu S, Van der Maaten L, et al. Condensenet: An efficient densenet using learned group convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition, 2018: 2752-2761.
Get Citation
Copy Citation Text
SHU Lang, ZHANG Zhi-jie, LEI Bo. Research on Dense-Yolov5 Algorithm for Infrared Target Detection[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2021, 19(1): 69
Category:
Received: Sep. 25, 2020
Accepted: --
Published Online: Aug. 19, 2021
The Author Email:
CSTR:32186.14.