Acta Photonica Sinica, Volume. 53, Issue 1, 0114004(2024)
The Frequency-stabilized Raman Laser System Based on Isotope Atom Saturated Absorption Spectrum
[1] PETERS A, CHUNG K Y, CHU S. Measurement of gravitational acceleration by dropping atoms[J]. Nature, 400, 849-852(1999).
[2] HU Zhongkun, SUN Buliang, DUAN Xiaochun et al. Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter[J]. Physical Review A, 88, 043610(2013).
[3] HUANG Panwei, TANG Biao, CHEN Xi et al. Accuracy and stability evaluation of the 85Rb atom gravimeter WAG-H5-1 at the 2017 International Comparison of Absolute Gravimeters[J]. Metrologia, 56, 045012(2019).
[4] HAUTH H, FREIER C, SCHKOLNIK V et al. First gravity measurements using the mobile atom interferometer GAIN[J]. Applied Physics B, 113, 49-55(2013).
[5] WANG Yuping, ZHONG Jiaqi, SONG Hongwei et al. Location-dependent Raman transition in gravity-gradient measurements using dual atom interferometers[J]. Physical Review A, 95, 053612(2017).
[6] Wei LYU, ZHONG Jiaqi, ZHANG Xiaowei et al. Compact high-resolution absolute-gravity gradiometer based on atom interferometers[J]. Physical Review Applied, 18, 054091(2022).
[7] DURFEE D S, SHAHAM Y K, AAND KASEVICH M. Long-term stability of an area-reversible atom-interferometer Sagnac gyroscope[J]. Physical Review Letters, 97, 240801(2006).
[8] BERG P, ABEND S, TACKMANN G et al. Composite-light-pulse technique for high-precision atom interferometry[J]. Physical Review Letters, 114, 063002(2015).
[9] ZHOU Li, HE Chuan, YAN Sitong et al. Joint mass-and-energy test of the equivalence principle at the 10-10level using atoms with specified mass and internal energy[J]. Physical Review A, 104, 022822(2021).
[10] HOGAN J. Towards precision tests of general relativity using an atom interferometer[D], 13-19(2010).
[11] ZHOU Li, LONG Shitong, TANG Biao et al. Test of equivalence principle at 10-8 level by a dual-species double-diffraction raman atom interferometer[J]. Physical Review Letters, 115, 013004(2015).
[12] FIXLER J B, FOSTER G T, MCGUIRK J M et al. Atom interferometer measurement of the newtonian constant of gravity[J]. Science, 315, 74-77(2007).
[13] LAMPORESI G, BERTOLDI A, CACCIAPUOTI L et al. Determination of the newtonian gravitational constant using atom interferometry[J]. Physical Review Letters, 100, 050801(2008).
[14] ROSI G, SORRENTINO F, CACCIAPUOTI L et al. Precision measurement of the Newtonian gravitational constant using cold atoms[J]. Nature, 510, 518-521(2014).
[15] BOUCHENDIRA R, CLADÉ P, GUELLATI-KHÉLIFA S et al. New determination of the fine structure constant and test of the quantum electrodynamics[J]. Physical Review Letters, 106, 080801(2011).
[16] PARKER R H, YU Chenghui, ZHONG Weicheng et al. Measurement of the fine-structure constant as a test of the Standard Model[J]. Science, 360, 191-195(2018).
[17] BAKER J G, THORPE J I. Comparison of atom interferometers and light interferometers as space-based gravitational wave detectors[J]. Physical Review Letters, 108, 211101(2012).
[18] GRAHAM P W, HOGAN J M, KASEVICH M A et al. Resonant mode for gravitational wave detectors based on atom interferometry[J]. Physical Review D, 94, 104022(2016).
[19] NABIGHIAN M N, ANDER M E, GRAUCH V J S et al. Historical development of the gravity method in exploration[J]. Geophysics, 70, 63-89(2005).
[20] JEKELI C. Navigation error analysis of atom interferometer inertial sensor[J]. Navigation, 52, 1-14(2005).
[21] BRANCA S, CARBONE D, GRECO F. Intrusive mechanism of the 2002 NE-Rift eruption at Mt. Etna (Italy) inferred through continuous microgravity data and volcanological evidences[J]. Geophysical Research Letters, 30, 2077(2003).
[22] CARRAZ O, CHARRIÈRE R, CADORET M et al. Phase shift in an atom interferometer induced by the additional laser lines of a Raman laser generated by modulation[J]. Physical Review A, 86, 033605(2012).
[23] CHEINET P, PEREIRA DOS SANTOS F, PETELSKI T et al. Compact laser system for atom interferometry[J]. Applied Physics B, 84, 643-646(2006).
[24] MERLET S, VOLODIMER L, LOURS M et al. A simple laser system for atom interferometry[J]. Applied Physics B, 117, 749-754(2014).
[25] FANG Jie, HU Jiangong, CHEN Xi et al. Realization of a compact one-seed laser system for atom interferometer-based gravimeters[J]. Optics Express, 26, 001586(2018).
[26] CARRAZ O, LIENHART F, CHARRIÉRE R et al. Compact and robust laser system for onboard atom interferometry[J]. Applied Physics B, 97, 405-411(2009).
[27] SCHMIDT M, PREVEDELLI M, GIORGINI A et al. A portable laser system for high-precision atom interferometry experiments[J]. Applied Physics B, 102, 11-18(2011).
[28] ZHANG Xiaowei, ZHONG Jiaqi, TANG Biao et al. Compact portable laser system for mobile cold atom gravimeters[J]. Applied Optics, 57, 006545(2018).
[29] LE GOUËTA J, CHEINET P, KIMB J et al. Influence of lasers propagation delay on the sensitivity of atom interferometers[J]. The European Physical Journal D, 44, 419-425(2007).
Get Citation
Copy Citation Text
Yuping WANG, Lei ZHU, Jiaqi ZHONG, Jin WANG, Runbing LI, Weijun LING. The Frequency-stabilized Raman Laser System Based on Isotope Atom Saturated Absorption Spectrum[J]. Acta Photonica Sinica, 2024, 53(1): 0114004
Category:
Received: Jun. 19, 2023
Accepted: Oct. 7, 2023
Published Online: Feb. 1, 2024
The Author Email: Yuping WANG (ypwang@tsnu.edu.cn)