Acta Optica Sinica, Volume. 42, Issue 24, 2428005(2022)
Scene Classification of Remote Sensing Images Based on Wavelet-Spatial High-Order Feature Aggregation Network
[1] Yang Z, Mu X D, Wang S Y et al. Scene classification of remote sensing images based on multiscale features fusion[J]. Optics and Precision Engineering, 26, 3099-3107(2018).
[2] Xu Y H, Du B, Zhang L P. Assessing the threat of adversarial examples on deep neural networks for remote sensing scene classification: attacks and defenses[J]. IEEE Transactions on Geoscience and Remote Sensing, 59, 1604-1617(2021).
[3] Gong X, Chen Z L, Wu L et al. Transfer learning based mixture of experts classification model for high-resolution remote sensing scene classification[J]. Acta Optica Sinica, 41, 2301003(2021).
[4] Peng C, Li Y Y, Jiao L C et al. Efficient convolutional neural architecture search for remote sensing image scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 59, 6092-6105(2021).
[5] Wang P, Liu R, Xin X J et al. Scene classification of optical remote sensing images based on residual networks[J]. Laser & Optoelectronics Progress, 58, 0210001(2021).
[6] Li Y S, Zhu Z H, Yu J G et al. Learning deep cross-modal embedding networks for zero-shot remote sensing image scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 59, 10590-10603(2021).
[7] Zhu S X, Zhou Z J, Gu X J et al. Scene classification of remote sensing images based on RCF network[J]. Laser & Optoelectronics Progress, 58, 1401001(2021).
[8] Wu C, Wang H W, Yuan Y W et al. Image feature fusion based remote sensing scene zero-shot classification algorithm[J]. Acta Optica Sinica, 39, 0610002(2019).
[9] Ma A L, Yu N, Zheng Z et al. A supervised progressive growing generative adversarial network for remote sensing image scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 5618818(2022).
[10] He N J, Fang L Y, Li S T et al. Remote sensing scene classification using multilayer stacked covariance pooling[J]. IEEE Transactions on Geoscience and Remote Sensing, 56, 6899-6910(2018).
[11] Li E Z, Xia J S, Du P J et al. Integrating multilayer features of convolutional neural networks for remote sensing scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 55, 5653-5665(2017).
[12] Ni K, Wu Y Q. Scene classification from remote sensing images using mid-level deep feature learning[J]. International Journal of Remote Sensing, 41, 1415-1436(2020).
[13] Bi Q, Qin K, Zhang H et al. APDC-net: attention pooling-based convolutional network for aerial scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 17, 1603-1607(2020).
[14] He N J, Fang L Y, Li S T et al. Skip-connected covariance network for remote sensing scene classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 31, 1461-1474(2020).
[15] Li E Z, Samat A, Zhang C et al. First and second-order information fusion networks for remote sensing scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 19, 8014405(2022).
[16] Sun H, Li S Y, Zheng X T et al. Remote sensing scene classification by gated bidirectional network[J]. IEEE Transactions on Geoscience and Remote Sensing, 58, 82-96(2020).
[17] Shi C P, Wang T, Wang L G. Branch feature fusion convolution network for remote sensing scene classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5194-5210(2020).
[18] Li C, Zhuang Y, Liu W C et al. Effective multiscale residual network with high-order feature representation for optical remote sensing scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 19, 6003105(2022).
[19] Bi Q, Qin K, Li Z L et al. Multiple instance dense connected convolution neural network for aerial image scene classification[C], 2501-2505(2019).
[20] Williams T, Li R. Wavelet pooling for convolutional neural networks[C](2018).
[22] Kong S, Fowlkes C. Low-rank bilinear pooling for fine-grained classification[C], 7025-7034(2017).
[23] Ni K, Wu Y Q, Wang P. Scene classification from synthetic aperture radar images using generalized compact channel-boosted high-order orderless pooling network[J]. Remote Sensing, 11, 1079(2019).
[24] Li P H, Xie J T, Wang Q L et al. Towards faster training of global covariance pooling networks by iterative matrix square root normalization[C], 947-955(2018).
[25] Li P H, Xie J T, Wang Q L et al. Is second-order information helpful for large-scale visual recognition?[C], 2089-2097(2017).
[26] Xia G S, Hu J W, Hu F et al. AID: a benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 55, 3965-3981(2017).
[27] Cheng G, Han J W, Lu X Q. Remote sensing image scene classification: benchmark and state of the art[J]. Proceedings of the IEEE, 105, 1865-1883(2017).
Get Citation
Copy Citation Text
Kang Ni, Mingliang Zhai, Peng Wang. Scene Classification of Remote Sensing Images Based on Wavelet-Spatial High-Order Feature Aggregation Network[J]. Acta Optica Sinica, 2022, 42(24): 2428005
Category: Remote Sensing and Sensors
Received: Apr. 26, 2022
Accepted: Jun. 16, 2022
Published Online: Dec. 14, 2022
The Author Email: Ni Kang (tznikang@163.com)