Journal of Geo-information Science, Volume. 22, Issue 4, 857(2020)

Effective Change Detection Approaches for Geographic National Condition Monitoring and Land Cover Map Updating

Peijun DU1,1,2,2,3,3、*, Xin WANG1,1,2,2,3,3, Yaping MENG1,1,2,2,3,3, Cong LIN1,1,2,2,3,3, Peng ZHANG1,1,2,2,3,3, and Gang LU2,2,4,4
Author Affiliations
  • 1School of Geography and Ocean Science, Nanjing University, Nanjing 210023,China
  • 1南京大学地理与海洋科学学院,南京 210023
  • 2Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, Nanjing University, Nanjing 210023, China
  • 2南京大学自然资源部国土卫星遥感应用重点实验室,南京 210023
  • 3Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
  • 3江苏省地理信息资源开发与利用协同创新中心,南京 210023
  • 4Jiangsu Provincial Surveying and Mapping Engineering Institute, Nanjing 210013, China
  • 4江苏省测绘工程院,南京 210013
  • show less
    References(31)

    [1] [1] 李德仁, 邵振峰, 丁霖, 地理国情信息的多级网格化表达[J]. 地理空间信息, 2014,12(1):1-5. [ LiD R, ShaoZ F, DingL. Research on multi-grids expression of geographic national conditions[J]. Geospatial Information, 2014,12(1):1-5. ] [ Li D R, Shao Z F, Ding L. Research on multi-grids expression of geographic national conditions[J]. Geospatial Information, 2014,12(1):1-5. ]

    [2] [2] 张静, 兀伟, 郭玉芳, 等. 国内外地理国情监测相关标准分析与思考[J]. 测绘与空间地理信息, 2014,37(1):168-171. [ ZhangJ, WuW, GuoY F, et al. Consideration and analysis of domestic and foreign national geographic monitoring standardization[J]. Geomatics and Spatial Information Technology, 2014,37(1):168-171. ] [ Zhang J, Wu W, Guo Y F, et al. Consideration and analysis of domestic and foreign national geographic monitoring standardization[J]. Geomatics and Spatial Information Technology, 2014,37(1):168-171. ]

    [3] [3] 陈俊勇. 地理国情监测的学习札记[J]. 测绘学报, 2012,41(5):633-635. [ ChenJ Y. Study notes on geographic national condition monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2012,41(5):633-635. ] [ Chen J Y. Study notes on geographic national condition monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2012,41(5):633-635. ]

    [4] [4] 李德仁, 眭海刚, 单杰. 论地理国情监测的技术支撑[J]. 武汉大学学报·信息科学版, 2012,37(5):505-512. [ LiD R, SuiH G, ShanJ. Discussion on key technologies of geographic national conditions monitoring[J]. Geomatics and Information Science of Wuhan University, 2012,37(5):505-512. ] [ Li D R, Sui H G, Shan J. Discussion on key technologies of geographic national conditions monitoring[J]. Geomatics and Information Science of Wuhan University, 2012,37(5):505-512. ]

    [5] [5] 史文中, 陈鹏飞, 张效康. 地理国情监测可靠性分析[J]. 测绘学报, 2017,46(10):1620-1626. [ ShiW Z, ChenP F, ZhangX K. Reliability analysis in geographical conditions monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017,46(10):1620-1626. ] [ Shi W Z, Chen P F, Zhang X K. Reliability analysis in geographical conditions monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017,46(10):1620-1626. ]

    [6] [6] 张良培, 武辰. 多时相遥感影像变化检测的现状与展望[J]. 测绘学报, 2017,46(10):1447-1459. [ ZhangL P, WuC. Advance and future development of change detection for multi-temporal remote sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2017,46(10):1447-1459. ] [ Zhang L P, Wu C. Advance and future development of change detection for multi-temporal remote sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2017,46(10):1447-1459. ]

    [8] Current situation and needs of change detection techniques[J]. International Journal of Image and Data Fusion, 5, 13-38(2014).

    [9] Automatic analysis of the difference image for unsupervised change detection[J]. IEEE Transactions on Geoscience and Remote sensing, 38, 1171-1182(2000).

    [10] et alObject-based change detection[J]. International Journal of Remote Sensing, 33, 4434-4457(2012).

    [11] [11] 王建明, 史文中, 邵攀. 自适应距离和模糊拓扑优化的模糊聚类 SAR 影像变化检测[J]. 测绘学报, 2018,47(5):611-619. [ WangJ M, ShiW Z, ShaoP. Change-detection method for SAR image using adaptive distance and fuzzy topology optimization-based fyzzy clustering[J]. Acta Geodaetica et Cartographica Sinica, 2018,47(5):611-619. ] [ Wang J M, Shi W Z, Shao P. Change-detection method for SAR image using adaptive distance and fuzzy topology optimization-based fyzzy clustering[J]. Acta Geodaetica et Cartographica Sinica, 2018,47(5):611-619. ]

    [12] [12] 施文灶, 毛政元. 基于图分割的高分辨率遥感影像建筑物变化检测研究[J]. 地球信息科学学报, 2016,18(3):423-432. [ ShiW Z, MaoZ Y. The research on building change detection from high resolution remotely sensed imagery based on graph-cut segmentation[J]. Journal of Geo-information Science, 2016,18(3):423-432. ] [ Shi W Z, Mao Z Y. The research on building change detection from high resolution remotely sensed imagery based on graph-cut segmentation[J]. Journal of Geo-information Science, 2016,18(3):423-432. ]

    [13] [13] 冯文卿, 眭海刚, 涂继辉, 等. 联合像素级和对象级分析的遥感影像变化检测[J]. 测绘学报, 2017,46(9):1147-1155. [ FengW Q, SuiH G, TuJ H, et al. Remote sensing image change detection based on the combination of pixel-level and object-level analysis[J]. Acta Geodaetica et Cartographica Sinica, 2017,46(9):1147-1155. ] [ Feng W Q, Sui H G, Tu J H, et al. Remote sensing image change detection based on the combination of pixel-level and object-level analysis[J]. Acta Geodaetica et Cartographica Sinica, 2017,46(9):1147-1155. ]

    [14] [14] 龙玄耀, 李培军. 基于图像分割的城市变化检测[J]. 地球信息科学学报, 2008,10(1):121-127. [ LongX Y, LiP J. A method of urban change detection based on image segmentation[J]. Journal of Geo-information Science, 2008,10(1):121-127. ] [ Long X Y, Li P J. A method of urban change detection based on image segmentation[J]. Journal of Geo-information Science, 2008,10(1):121-127. ]

    [15] [15] 张鑫龙, 陈秀万, 李飞, 等. 高分辨率遥感影像的深度学习变化检测方法[J]. 测绘学报, 2017,46(8):999-1008. [ ZhangX L, ChenX W, LiF, et al. Change detection method for high resolution remote sensing images using deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2017,46(8):999-1008. ] [ Zhang X L, Chen X W, Li F, et al. Change detection method for high resolution remote sensing images using deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2017,46(8):999-1008. ]

    [16] Change-vector analysis in multitemporal space: A tool to detect and categorize land-cover change processes using high temporal-resolution satellite data[J]. Remote Sensing of Environment, 48, 231-244(1994).

    [17] Change vector analysis: A technique for the multispectral monitoring of land cover and condition[J]. International Journal of Remote Sensing, 19, 411-426(1998).

    [18] [18] 陈晋, 何春阳, 卓莉. 基于变化向量分析 (CVA) 的土地利用/覆盖变化动态监测(Ⅱ)—变化类型的确定方法[J]. 遥感学报, 2001,5(5):346-352. [ ChenJ, HeC Y, ZhuoL. Land Use/Cover Change Detection with Change Vector Analysis (CVA): Change Type Determining[J]. Journal of Remote Sensing, 2001,5(5):346-352. ] [ Chen J, He C Y, Zhuo L. Land Use/Cover Change Detection with Change Vector Analysis (CVA): Change Type Determining[J]. Journal of Remote Sensing, 2001,5(5):346-352. ]

    [19] A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 9, 62-66(1979).

    [20] et alInformation fusion techniques for change detection from multi-temporal;remote sensing images[J]. Information Fusion, 14, 19-27(2013).

    [21] The expectation-maximization algorithm[J]. Signal Processing Magazine IEEE, 13, 47-60(1996).

    [22] Unsupervised change-detection methods for remote-sensing images[J]. International Society for Optics and Photonics, 41, 3288-3222(2002).

    [23] K-means clustering via principal component analysis[C]. Proceedings of the twenty-first international conference on Machine learning. ACM, 29(2004).

    [24] Unsupervised Change Detection in Satellite Images Using Principal Component Analysis and k-Means Clustering[J]. IEEE Geoscience and Remote Sensing Letters, 6, 772-776(2009).

    [25] et alUsing combined difference image and -means clustering for SAR image change Detection[J]. IEEE Geoscience & Remote Sensing Letters, 11, 691-695(2013).

    [26] [26] 盛辉, 廖明生, 张路. 基于典型相关分析的变化检测中变化阈值的确定[J] 遥感学报, 2004,8(5):451-457. [ ShengH, LiaoM S, ZhangL. Determination of threshold in change detection based on cononical correlation analysis[J]. Journal of Remote Sensing, 2004,8(5):451-457. ] [ Sheng H, Liao M S, Zhang L. Determination of threshold in change detection based on cononical correlation analysis[J]. Journal of Remote Sensing, 2004,8(5):451-457. ]

    [27] Algorithm AS 136: A K-Means Clustering Algorithm[J]. Journal of the Royal Statistical Society, 28, 100-108(1979).

    [28] [28] 杜培军, 林卉, 孙敦新. 基于支持向量机的高光谱遥感分类进展[J]. 测绘通报, 2006(12):37-40. [ DuP J, LinH, SunD X. On progress of support vector machine based hyperspectral RS classification[J]. Bulletin of Surveying and Mapping, 2006(12):37-40. ] [ Du P J, Lin H, Sun D X. On progress of support vector machine based hyperspectral RS classification[J]. Bulletin of Surveying and Mapping, 2006(12):37-40. ]

    [29] Support vector machines in remote sensing: A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 66, 247-259(2011).

    [30] Support vector machines for classification in remote sensing[J]. International Journal of Remote Sensing, 26, 1007-1011(2005).

    [31] et alObject-based change detection in urban areas from high spatial resolution images based on multiple features and ensemble learning[J]. Remote Sensing, 10, 276(2018).

    Tools

    Get Citation

    Copy Citation Text

    Peijun DU, Xin WANG, Yaping MENG, Cong LIN, Peng ZHANG, Gang LU. Effective Change Detection Approaches for Geographic National Condition Monitoring and Land Cover Map Updating[J]. Journal of Geo-information Science, 2020, 22(4): 857

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Dec. 4, 2019

    Accepted: --

    Published Online: Nov. 12, 2020

    The Author Email: Peijun DU (peijun@nju.edu.cn)

    DOI:10.12082/dqxxkx.2020.190747

    Topics