Optics and Precision Engineering, Volume. 33, Issue 10, 1609(2025)

Multi-scale enhancement and color depth codec correction of flotation foam low illumination images

Lei SUN1,2, Qian TANG1, Yipeng LIAO1、*, Yuhua LIAO1, Zexi DONG1, and Jianjun HE3
Author Affiliations
  • 1College of Physics and Information Engineering, Fuzhou University, Fuzhou35008, China
  • 2School of Zhicheng College, Fuzhou University, Fuzhou35000, China
  • 3Fujian Jindong Mining Co. Ltd., Sanming65101,China
  • show less
    References(44)

    [1] ALDRICH C, AVELAR E, LIU X. Recent advances in flotation froth image analysis[J]. Minerals Engineering, 188, 107823(2022).

    [2] 廖一鹏, 陈诗媛, 杨洁洁. NSST域改进ORB的泡沫流动特征提取及加药状态识别[J]. 光学 精密工程, 28, 2684-2699(2020).

         LIAO Y P, CHEN S Y, YANG J J et al. Dosing status identification and froth flow feature extraction based on improved ORB in NSST domain[J]. Opt. Precision Eng., 28, 2684-2699(2020).

    [3] LIU J P, HE J Z, XIE Y F et al. Illumination-invariant flotation froth color measuring via Wasserstein distance-based CycleGAN with structure-preserving constraint[J]. IEEE Transactions on Cybernetics, 51, 839-852(2021).

    [4] WANG X L, ZHANG Y N, KONG L S et al. Illumination consistency processing based on illumination domain signal-guided unsupervised generative adversarial network for flotation froth images[J]. IEEE Transactions on Instrumentation and Measurement, 74, 5004916(2024).

    [5] CHEN N, HUANG L, GUI W H et al. The statistical modeling and constant color correction algorithms for froth image[J]. Control Theory & Applications, 33, 613-620(2016).

         陈宁, 黄璐, 桂卫华. 泡沫图像统计建模与恒常颜色校正算法研究[J]. 控制理论与应用, 33, 613-620(2016).

    [6] 王宇龙, 王然风, 付翔. 联合CLAHE和BM3D的浮选泡沫图像预处理方法[J]. 煤炭技术, 41, 222-224(2022).

         WANG Y L, WANG R F, FU X et al. Image pretreatment of flotation froth based on CLAHE and BM3D fusion[J]. Coal Technology, 41, 222-224(2022).

    [7] 肖文辉, 唐朝晖, 刘金平. 基于气泡稳定性分析的锌浮选泡沫图像时空联合去噪[J]. 控制理论与应用, 37, 721-730(2020).

         XIAO W H, TANG Z H, LIU J P et al. Stability characteristics-based zinc-flotation froth image denoising fusing spatial-temporal information[J]. Control Theory & Applications, 37, 721-730(2020).

    [8] XIE Y F, ZHANG B, XIE S W et al. Flotation froth image enhancement based on region decomposition and guided filtering[J]. Minerals Engineering, 216, 108919(2024).

    [9] LIAO Y P, WANG W X, FU H D et al. Flotation foam image NSCT multi-scale enhancement with fractional differential[J]. Journal of South China University of Technology (Natural Science Edition), 46, 92-102(2018).

         廖一鹏, 王卫星, 付华栋. 结合分数阶微分的浮选泡沫图像NSCT多尺度增强[J]. 华南理工大学学报(自然科学版), 46, 92-102(2018).

    [10] NING X, SU J, KOCHAN O. Low-illumination image enhancement method based on adaptive MSRCR algorithm[C], 93-102(2023).

    [11] 王昊天, 刘庆省, 陈亮. 改进的CycleGAN网络用于水下显微图像颜色校正[J]. 光学 精密工程, 30, 1499-1508(2022).

         WANG H T, LIU Q S, CHEN L et al. Improved CycleGAN network for underwater microscopic image color correction[J]. Opt. Precision Eng., 30, 1499-1508(2022).

    [12] LI J Q, YANG C H, ZHU H Q et al. Improved image enhancement method for flotation froth image based on parameter extraction[J]. Journal of Central South University, 20, 1602-1609(2013).

    [13] CHEN Q J, GU Y. Low-light image enhancement algorithm based on multi-channel fusion attention network[J]. Opt. Precision Eng., 31, 2111-2122(2023).

         陈清江, 顾媛. 多通道融合注意力网络的低照度图像增强[J]. 光学 精密工程, 31, 2111-2122(2023).

    [14] 季渊, 李星仪, 马新德. 面向舞台场景的改进Retinex低照度图像增强[J]. 光学 精密工程, 31, 2573-2583(2023).

         JI Y, LI X Y, MA X D et al. Improved Retinex low-light image enhancement for stage scenes[J]. Opt. Precision Eng., 31, 2573-2583(2023).

    [15] LÜ F, CUI X Y, LIU T. Multiscale low-light image enhancement algorithm with brightness equalization and edge enhancement algorithm[J]. Laser & Optoelectronics Progress, 61, 451-459(2024).

         吕伏, 崔向燕, 刘铁. 亮度均衡与边缘强化的多尺度低照度图像增强算法[J]. 激光与光电子学进展, 61, 451-459(2024).

    [16] LI C Y, GUO C L, LOY C C. Learning to enhance low-light image via zero-reference deep curve estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 4225-4238(2022).

    [17] GHARBI M, CHEN J W, BARRON J T et al. Deep bilateral learning for real-time image enhancement[J]. ACM Transactions on Graphics, 36, 1-12(2017).

    [18] WANG H Y, XU K, LAU R W H[M]. Local Color Distributions Prior for Image Enhancement, 343-359(2022).

    [19] YANG K F, CHENG C, ZHAO S X et al. Learning to adapt to light[J]. International Journal of Computer Vision, 131, 1022-1041(2023).

    [20] SHI J H, ZHONG Y Z, ZHENG X J et al. Low-light image enhancement algorithm based on light scattering attenuation model[J]. Opt. Precision Eng., 31, 1244-1255(2023).

         石吉豪, 钟羽中, 郑秀娟. 基于光线散射衰减模型的低照度图像增强[J]. 光学 精密工程, 31, 1244-1255(2023).

    [21] SHI Y Q, LIU D, ZHANG L G et al. ZERO-IG: Zero-Shot Illumination-Guided Joint Denoising and Adaptive Enhancement for Low-Light Images[C], 3015-3024(2024).

    [22] CHANG R, LIU G, QIAN Y et al. GDNet: a low-light image enhancement network based on Ghost-Block and unique image decomposition[J]. The Journal of Supercomputing, 81, 160(2024).

    [23] BRATEANU A, BALMEZ R, AVRAM A et al. Lyt-net: Lightweight yuv transformer-based network for low-light image enhancement[J]. IEEE Signal Processing Letters, 32, 2065-2069(2025).

    [24] LIAO Y P, ZHANG J, WANG Z G et al. Flotation performance recognition based on dual-modality multiscale CNN features and adaptive deep learning KELM[J]. Opt. Precision Eng., 28, 1785-1798(2020).

         廖一鹏, 张进, 王志刚. 结合双模多尺度CNN特征及自适应深度 KELM的浮选工况识别[J]. 光学 精密工程, 28, 1785-1798(2020).

    [25] HU J, SHEN L, SUN G. Squeeze-and-Excitation Networks[C], 7132-7141(2018).

    [26] ZHAO M H, QIN X D, DU S L et al. Low-light stereo image enhancement and de-noising in the low-frequency information enhanced image space[J]. Expert Systems with Applications, 265, 125803(2025).

    [27] YANG L, ZHANG R Y, LI L et al. Simam: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks[C], 11863-11874(2021).

    [28] CHEN L Y, CHU X J, ZHANG X Y et al[M]. Simple Baselines for Image Restoration, 17-33(2022).

    [29] 李海军, 孔繁程, 魏嘉彧. 基于直觉模糊集和CLAHE红外舰船图像增强算法[J]. 兵器装备工程学报, 43, 88-94(2022).

         LI H J, KONG F C, WEI J Y et al. Based on intuitionistic fuzzy set and CLAHE infrared ship image enhancement algorithm[J]. Journal of Ordnance Equipment Engineering, 43, 88-94(2022).

    [30] WEI C, WANG W, YANG W et al. Deep Retinex Decomposition for Low-Light Enhancement[J]. ArXiv(2018).

    [31] LIU H X, HUANG M, WU B et al. Study of color difference evaluation in color digital images[J]. Acta Optica Sinica, 32, 331-340(2012).

         刘浩学, 黄敏, 武兵. 彩色数字图像色差计算方法的研究[J]. 光学学报, 32, 331-340(2012).

    Tools

    Get Citation

    Copy Citation Text

    Lei SUN, Qian TANG, Yipeng LIAO, Yuhua LIAO, Zexi DONG, Jianjun HE. Multi-scale enhancement and color depth codec correction of flotation foam low illumination images[J]. Optics and Precision Engineering, 2025, 33(10): 1609

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 17, 2024

    Accepted: --

    Published Online: Jul. 23, 2025

    The Author Email: Yipeng LIAO (fzu_lyp@163.com)

    DOI:10.37188/OPE.20253310.1609

    Topics