Acta Optica Sinica, Volume. 24, Issue 2, 243(2004)
Reflection Properties of Dielectric Mirror with Weak Absorption Using Equivalent-Cavity Model
[1] [1] Brabec T, Krausz F. Intense few-cycle laser fields: frontiers nonlinear optics. Rev. Mod. Phys., 2000, 72(2): 545~591
[3] [3] Babic D I, Corzine S W. Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors. IEEE J. Quant. Electron., 1992, 28(2):514~524
[4] [4] Szipocs R, Kohazi-Kis A, Lako S et al.. Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers. Appl. Phys. (B), 2000, 70:S51~S57
[5] [5] Takada H, Kakehata M, Torizuka K. Broadband high-energy mirror for ultrashort pulse amplification system. Appl. Phys. (B), 2000, 70:S189~S192
[6] [6] Jasapara J, Nampoothiri A V V, Rudolph W et al.. Physical mechanisms of femtosecond pulse induced damage in dielectric thin-films. Proc. SPIE, 2001, 4347:35~44
[7] [7] Blaschke H, Arens W, Ristau D et al.. Thickness dependence of damage thresholds for 193 nm dielectric mirrors by predamage sensitive photothermal technique. Proc. SPIE, 2000, 3902:242~248
[9] [9] Shirakawa A, Sakane I, Takasaka M et al.. Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification. Appl. Phys. Lett., 1999, 74(16):2268~2270
[10] [10] Zhou X, Chen J, Lu Y. Analytical characterization of grating-tuned external-cavity semiconductor lasers. Appl. Opt., 1997, 36(18):4138~4141
[11] [11] Wang J, Chen J. Tracing amplified spontaneous emission inside multi-segment semiconductor lasers. J. Opt. Commun., 1999, 20(1):8~11
[12] [12] Born M, Wolf E. Principles of Optics. Cambridge Univ. Press, 1999, 65
Get Citation
Copy Citation Text
[in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Reflection Properties of Dielectric Mirror with Weak Absorption Using Equivalent-Cavity Model[J]. Acta Optica Sinica, 2004, 24(2): 243