Acta Optica Sinica, Volume. 42, Issue 17, 1706001(2022)

Recent Progress in Optical Micro/Nanofiber Technology

Limin Tong*
Author Affiliations
  • State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • show less
    References(131)

    [1] Kao K C, Hockham G A. Dielectric-fibre surface waveguides for optical frequencies[J]. Proceedings of the Institution of Electrical Engineers, 113, 1151-1158(1966).

    [2] Murata H[M]. Handbook of optical fibers and cables(1996).

    [3] Tong L M, Gattass R R, Ashcom J B et al. Subwavelength-diameter silica wires for low-loss optical wave guiding[J]. Nature, 426, 816-819(2003).

    [4] Tong L M, Sumetsky M[M]. Subwavelength and nanometer diameter optical fibers(2010).

    [5] Brambilla G. Optical fibre nanowires and microwires: a review[J]. Journal of Optics, 12, 043001(2010).

    [6] Tong L M, Zi F, Guo X et al. Optical microfibers and nanofibers: a tutorial[J]. Optics Communications, 285, 4641-4647(2012).

    [7] Wu X Q, Wang Y P, Tong L M. Optical microfibers and their applications[J]. Physics, 44, 356-365(2015).

    [8] Nayak K P, Sadgrove M, Yalla R et al. Nanofiber quantum photonics[J]. Journal of Optics, 20, 073001(2018).

    [9] Tong L M, Lou J Y, Mazur E. Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides[J]. Optics Express, 12, 1025-1035(2004).

    [10] Huang K J, Yang S Y, Tong L M. Modeling of evanescent coupling between two parallel optical nanowires[J]. Applied Optics, 46, 1429-1434(2007).

    [11] Guo X, Qiu M, Bao J M et al. Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits[J]. Nano Letters, 9, 4515-4519(2009).

    [12] Shao L Q, Xu Y X, Wu H et al. Experimental demonstration of a compact variable single-mode fiber coupler based on microfiber[J]. IEEE Photonics Technology Letters, 33, 687-690(2021).

    [13] Foster M A, Moll K D, Gaeta A L. Optimal waveguide dimensions for nonlinear interactions[J]. Optics Express, 12, 2880-2887(2004).

    [14] Foster M A, Turner A C, Lipson M et al. Nonlinear optics in photonic nanowires[J]. Optics Express, 16, 1300-1320(2008).

    [15] Lægsgaard J. Modeling of nonlinear propagation in fiber tapers[J]. Journal of the Optical Society of America B, 29, 3183-3191(2012).

    [16] Lou J Y, Tong L M, Ye Z Z. Modeling of silica nanowires for optical sensing[J]. Optics Express, 13, 2135-2140(2005).

    [17] Zhang L, Wang P, Xiao Y et al. Ultra-sensitive microfibre absorption detection in a microfluidic chip[J]. Lab on a Chip, 11, 3720-3724(2011).

    [18] Guo X, Ying Y B, Tong L M. Photonic nanowires: from subwavelength waveguides to optical sensors[J]. Accounts of Chemical Research, 47, 656-666(2014).

    [19] Xu Y, Zhang L, Tong L M. Optofluidic micro-nanofiber sensors[J]. Laser & Optoelectronics Progress, 56, 170614(2019).

    [20] Balykin V I, Hakuta K, Le Kien F et al. Atom trapping and guiding with a subwavelength-diameter optical fiber[J]. Physical Review A, 70, 011401(2004).

    [21] Le Kien F, Balykin V I, Hakuta K. Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber[J]. Physical Review A, 70, 063403(2004).

    [22] Nayak K P, Hakuta K. Single atoms on an optical nanofibre[J]. New Journal of Physics, 10, 053003(2008).

    [23] Brambilla G, Xu F. Adiabatic submicrometric tapers for optical tweezers[J]. Electronics Letters, 43, 204-205(2007).

    [24] She W L, Yu J H, Feng R H. Observation of a push force on the end face of a nanometer silica filament exerted by outgoing light[J]. Physical Review Letters, 101, 243601(2008).

    [25] Yu H K, Fang W, Gu F X et al. Longitudinal Lorentz force on a subwavelength-diameter optical fiber[J]. Physical Review A, 83, 053830(2011).

    [26] Luo W, Xu F, Lu Y Q. Reconfigurable optical-force-drive chirp and delay line in micro- or nanofiber Bragg grating[J]. Physical Review A, 91, 053831(2015).

    [27] Zhang Y, Zhu W G, Fan P P et al. A broadband and low-power light-control-light effect in a fiber-optic nano-optomechanical system[J]. Nanoscale, 12, 9800-9809(2020).

    [28] Yu Y, Zhang X L, Song Z Q et al. Precise control of the optical microfiber tapering process based on monitoring of intermodal interference[J]. Applied Optics, 53, 8222-8228(2014).

    [29] Xu Y X, Fang W, Tong L M. Real-time control of micro/nanofiber waist diameter with ultrahigh accuracy and precision[J]. Optics Express, 25, 10434-10440(2017).

    [30] Kang Y, Gong J, Xu Y X et al. Ultrahigh-precision diameter control of nanofiber using direct mode cutoff feedback[J]. IEEE Photonics Technology Letters, 32, 219-222(2020).

    [31] Yao N, Linghu S Y, Xu Y X et al. Ultra-long subwavelength micro/nanofibers with low loss[J]. IEEE Photonics Technology Letters, 32, 1069-1072(2020).

    [32] Warken F, Giessen H. Fast profile measurement of micrometer-sized tapered fibers with better than 50-nm accuracy[J]. Optics Letters, 29, 1727-1729(2004).

    [33] Sumetsky M, Dulashko Y. Radius variation of optical fibers with angstrom accuracy[J]. Optics Letters, 35, 4006-4008(2010).

    [34] Wiedemann U, Karapetyan K, Dan C et al. Measurement of submicrometre diameters of tapered optical fibres using harmonic generation[J]. Optics Express, 18, 7693-7704(2010).

    [35] Keloth J, Sadgrove M, Yalla R et al. Diameter measurement of optical nanofibers using a composite photonic crystal cavity[J]. Optics Letters, 40, 4122-4125(2015).

    [36] Jafari F, Ranjbar-Naeini O R, Zibaii M I et al. Profilometry of an optical microfiber based on modal evolution[J]. Optics Letters, 45, 6607-6610(2020).

    [37] Peng Z W, Zhang S H, Miao J S et al. Research on diameter measurement technology of optical microfiber[J]. Laser Technology, 45, 596-600(2021).

    [38] Chen J, Zi X H, Zhang S C et al. Real-time measurement and control of nanofiber diameters using a femtowatt photodetector[J]. Optics Express, 30, 12008-12013(2022).

    [39] Gu F X, Zhang L, Yin X F et al. Polymer single-nanowire optical sensors[J]. Nano Letters, 8, 2757-2761(2008).

    [40] Gu F X, Yu H K, Wang P et al. Light-emitting polymer single nanofibers via waveguiding excitation[J]. ACS Nano, 4, 5332-5338(2010).

    [41] Meng C, Xiao Y, Wang P et al. Quantum-dot-doped polymer nanofibers for optical sensing[J]. Advanced Materials, 23, 3770-3774(2011).

    [42] Ma Y G, Li X Y, Yu H K et al. Direct measurement of propagation losses in silver nanowires[J]. Optics Letters, 35, 1160-1162(2010).

    [43] Li X Y, Li W, Guo X et al. All-fiber hybrid photon-plasmon circuits: integrating nanowire plasmonics with fiber optics[J]. Optics Express, 21, 15698-15705(2013).

    [44] Yang Q, Lou J Y, Yang D R et al. An evanescent coupling approach for optical characterization of ZnO nanowires[J]. Chinese Journal of Semiconductors, 27, 241-244(2006).

    [45] Gu F X, Wang P, Yu H K et al. Optical quenching of photoconductivity in CdSe single nanowires via waveguiding excitation[J]. Optics Express, 19, 10880-10885(2011).

    [46] Gu F X, Zhang L, Yu H K et al. Large defect-induced sub-bandgap photoresponse in semiconductor nanowires via waveguiding excitation[J]. Nanotechnology, 22, 425201(2011).

    [47] Andersson U, Tong L M. Subwavelength-diameter silica wire for light in-coupling to silicon-based waveguide[J]. Chinese Optics Letters, 5, 577-579(2007).

    [48] Chen B G, Wu H, Xin C G et al. Flexible integration of free-standing nanowires into silicon photonics[J]. Nature Communications, 8, 20(2017).

    [49] Yao N, Zhou J X, Gao R H et al. Efficient light coupling between an ultra-low loss lithium niobate waveguide and an adiabatically tapered single mode optical fiber[J]. Optics Express, 28, 12416-12423(2020).

    [50] Xu Y X, Wu J J, Fang W et al. Microfiber coupled superconducting nanowire single-photon detectors[J]. Optics Communications, 405, 48-52(2017).

    [51] You L X, Wu J J, Xu Y X et al. Microfiber-coupled superconducting nanowire single-photon detector for near-infrared wavelengths[J]. Optics Express, 25, 31221-31229(2017).

    [52] Hou X T, Yao N, You L X et al. Ultra-broadband microfiber-coupled superconducting single-photon detector[J]. Optics Express, 27, 25241-25250(2019).

    [53] Wang P, Wang Y P, Yang Z Y et al. Single-band 2-nm-line-width plasmon resonance in a strongly coupled Au nanorod[J]. Nano Letters, 15, 7581-7586(2015).

    [54] Sumetsky M. Mode localization and the Q-factor of a cylindrical microresonator[J]. Optics Letters, 35, 2385-2387(2010).

    [55] Ai Q, Gui L L, Paone D et al. Ultranarrow second-harmonic resonances in hybrid plasmon-fiber cavities[J]. Nano Letters, 18, 5576-5582(2018).

    [56] Ai Q, Sterl F, Zhang H et al. Giant second harmonic generation enhancement in a high-Q doubly resonant hybrid plasmon-fiber cavity system[J]. ACS Nano, 15, 19409-19417(2021).

    [57] Zhou N, Yang Y X, Guo X et al. Strong mode coupling-enabled hybrid photon-plasmon laser with a microfiber-coupled nanorod[J]. Science Advances, 8, eabn2026(2022).

    [58] Shafi K M, Nayak K P, Miyanaga A et al. Efficient fiber in-line single photon source based on colloidal single quantum dots on an optical nanofiber[J]. Applied Physics B, 126, 58(2020).

    [59] Tashima T, Takashima H, Takeuchi S. Direct optical excitation of an NV center via a nanofiber Bragg-cavity: a theoretical simulation[J]. Optics Express, 27, 27009-27016(2019).

    [60] Skoff S M, Papencordt D, Schauffert H et al. Optical-nanofiber-based interface for single molecules[J]. Physical Review A, 97, 043839(2018).

    [61] Yalla R, Hakuta K. Design and implementation of a tunable composite photonic crystal cavity on an optical nanofiber[J]. Applied Physics B, 126, 187(2020).

    [62] Yalla R, Shafi K M, Nayak K P et al. One-sided composite cavity on an optical nanofiber for cavity QED[J]. Applied Physics Letters, 120, 071108(2022).

    [63] Zhang L, Lou J Y, Tong L M. Micro/nanofiber optical sensors[J]. Photonic Sensors, 1, 31-42(2011).

    [64] Lou J Y, Wang Y P, Tong L M. Microfiber optical sensors: a review[J]. Sensors, 14, 5823-5844(2014).

    [65] Tong L M. Micro/nanofibre optical sensors: challenges and prospects[J]. Sensors, 18, 903(2018).

    [66] Chen J H, Li D R, Xu F. Optical microfiber sensors: sensing mechanisms, and recent advances[J]. Journal of Lightwave Technology, 37, 2577-2589(2019).

    [67] Zhang L, Tang Y, Tong L M. Micro-/nanofiber optics: merging photonics and material science on nanoscale for advanced sensing technology[J]. iScience, 23, 100810(2020).

    [68] Zhang L, Pan J, Zhang Z et al. Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers[J]. Opto-Electronic Advances, 3, 21-27(2020).

    [69] Pan J, Zhang Z, Jiang C P et al. A multifunctional skin-like wearable optical sensor based on an optical micro-/ nanofibre[J]. Nanoscale, 12, 17538-17544(2020).

    [70] Jiang C P, Zhang Z, Pan J et al. Finger-skin-inspired flexible optical sensor for force sensing and slip detection in robotic grasping[J]. Advanced Materials Technologies, 6, 2100285(2021).

    [71] Tang Y, Liu H T, Pan J et al. Optical micro/nanofiber-enabled compact tactile sensor for hardness discrimination[J]. ACS Applied Materials & Interfaces, 13, 4560-4566(2021).

    [72] Zhang Z, Kang Y R, Yao N et al. A multifunctional airflow sensor enabled by optical micro/nanofiber[J]. Advanced Fiber Materials, 3, 359-367(2021).

    [73] Liu H T, Song X D, Wang X Y et al. Optical microfibers for sensing proximity and contact in human-machine interfaces[J]. ACS Applied Materials & Interfaces, 14, 14447-14454(2022).

    [75] Li Y P, Tan S J, Yang L Y et al. Optical microfiber neuron for finger motion perception[J]. Advanced Fiber Materials, 4, 226-234(2022).

    [76] Zhu H T, Zhan L W, Dai Q et al. Self-assembled wavy optical microfiber for stretchable wearable sensor[J]. Advanced Optical Materials, 9, 2002206(2021).

    [77] Xiang S H, You H, Miao X X et al. An ultra-sensitive multi-functional optical micro/nanofiber based on stretchable encapsulation[J]. Sensors, 21, 7437(2021).

    [78] Li H T, Huang Y Y, Hou G H et al. Single-molecule detection of biomarker and localized cellular photothermal therapy using an optical microfiber with nanointerface[J]. Science Advances, 5, eaax4659(2019).

    [79] Yang L Y, Li Y P, Fang F et al. Highly sensitive and miniature microfiber-based ultrasound sensor for photoacoustic tomography[J]. Opto-Electronic Advances, 5, 200076(2022).

    [80] Wu X Q, Tong L M. Optical microfibers and nanofibers[J]. Nanophotonics, 2, 407-428(2013).

    [81] Leon-Saval S G, Birks T A, Wadsworth W J et al. Supercontinuum generation in submicron fibre waveguides[J]. Optics Express, 12, 2864-2869(2004).

    [82] Gattass R R, Svacha G T, Tong L M et al. Supercontinuum generation in submicrometer diameter silica fibers[J]. Optics Express, 14, 9408-9414(2006).

    [83] Grubsky V, Feinberg J. Phase-matched third-harmonic UV generation using low-order modes in a glass micro-fiber[J]. Optics Communications, 274, 447-450(2007).

    [84] Ismaeel R, Lee T, Ding M et al. Nonlinear microfiber loop resonators for resonantly enhanced third harmonic generation[J]. Optics Letters, 37, 5121-5123(2012).

    [85] Mägi E C, Fu L B, Nguyen H C et al. Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers[J]. Optics Express, 15, 10324-10329(2007).

    [86] Choi H, Borondics F, Siegel D A et al. Broadband electromagnetic response and ultrafast dynamics of few-layer epitaxial graphene[J]. Applied Physics Letters, 94, 172102(2009).

    [87] Li W, Chen B G, Meng C et al. Ultrafast all-optical graphene modulator[J]. Nano Letters, 14, 955-959(2014).

    [88] Liu M, Yin X B, Ulin-Avila E et al. A graphene-based broadband optical modulator[J]. Nature, 474, 64-67(2011).

    [89] Meng C, Yu S L, Wang H Q et al. Graphene-doped polymer nanofibers for low-threshold nonlinear optical waveguiding[J]. Light: Science & Applications, 4, e348(2015).

    [90] Yu S L, Wu X Q, Chen K R et al. All-optical graphene modulator based on optical Kerr phase shift[J]. Optica, 3, 541-544(2016).

    [91] Wang L Z, Li L J, Tong L M. Optical microfibers and their applications in mode-locked fiber lasers[J]. Acta Optica Sinica, 39, 0126011(2019).

    [92] Wang L Z, Xu P Z, Li Y H et al. Femtosecond mode-locked fiber laser at 1 μm via optical microfiber dispersion management[J]. Scientific Reports, 8, 4732(2018).

    [93] Yang P L, Teng H, Fang S B et al. 65-fs Yb-doped all-fiber laser using tapered fiber for nonlinearity and dispersion management[J]. Optics Letters, 43, 1730-1733(2018).

    [94] Li Y H, Wang L Z, Kang Y et al. Microfiber-enabled dissipative soliton fiber laser at 2 μm[J]. Optics Letters, 43, 6105-6108(2018).

    [95] Chen J H, Tan J, Wu G X et al. Tunable and enhanced light emission in hybrid WS2-optical-fiber-nanowire structures[J]. Light: Science & Applications, 8, 8(2019).

    [96] Liao F, Yu J X, Gu Z Q et al. Enhancing monolayer photoluminescence on optical micro/nanofibers for low-threshold lasing[J]. Science Advances, 5, eaax7398(2019).

    [97] Wang K, Zheng J L, Huang H et al. All-optical signal processing in few-layer bismuthene coated microfiber: towards applications in optical fiber systems[J]. Optics Express, 27, 16798-16811(2019).

    [98] Wu Q, Huang W C, Wang Y Z et al. All-optical control of microfiber knot resonator based on 2D Ti2CTx MXene[J]. Advanced Optical Materials, 8, 1900977(2020).

    [99] Teng P P, Luo M, Yang X H et al. All-fiber bidirectional optical modulator derives from the microfiber coated with ITO electrode[J]. Optics Letters, 46, 2497-2500(2021).

    [100] Wang P F, Li S, Ling F Z et al. All-optical modulator based on a microfibre coil resonator functionalized with MXene[J]. Optical Fiber Technology, 68, 102776(2022).

    [101] Liu M, Wei Z W, Luo A P et al. Recent progress on applications of 2D material-decorated microfiber photonic devices in pulse shaping and all-optical signal processing[J]. Nanophotonics, 9, 2641-2671(2020).

    [102] Nayak K P, Wang J, Keloth J. Real-time observation of single atoms trapped and interfaced to a nanofiber cavity[J]. Physical Review Letters, 123, 213602(2019).

    [103] Alampounti A, Jenkins R A, Eriksson S. Magnetically trapped atoms in the vicinity of an optical nanofibre[J]. Applied Physics B, 126, 71(2020).

    [104] Stourm E, Lepers M, Robert J et al. Spontaneous emission and energy shifts of a Rydberg rubidium atom close to an optical nanofiber[J]. Physical Review A, 101, 052508(2020).

    [105] Su D Q, Qin X T, Jiang Y et al. Dark state atoms trapping in a magic-wavelength optical lattice near the nanofiber surface[J]. Chinese Optics Letters, 20, 020201(2022).

    [106] Yu J H, Chen L H, Dong H Z et al. Sensing and exploiting static femto-Newton optical forces by a nanofiber with white-light interferometry[J]. ACS Photonics, 5, 3205-3213(2018).

    [107] Lu J S, Yang H B, Zhou L N et al. Light-induced pulling and pushing by the synergic effect of optical force and photophoretic force[J]. Physical Review Letters, 118, 043601(2017).

    [108] Tkachenko G, Toftul I, Esporlas C et al. Light-induced rotation of dielectric microparticles around an optical nanofiber[J]. Optica, 7, 59-62(2020).

    [109] Su D Q, Solano P, Wack J D et al. Torsional optomechanical cooling of a nanofiber[J]. Photonics Research, 10, 601-609(2022).

    [110] Linghu S Y, Gu Z Q, Lu J S et al. Plasmon-driven nanowire actuators for on-chip manipulation[J]. Nature Communications, 12, 385(2021).

    [111] Beugnot J C, Lebrun S, Pauliat G et al. Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre[J]. Nature Communications, 5, 5242(2014).

    [112] Godet A, Ndao A, Sylvestre T et al. Brillouin spectroscopy of optical microfibers and nanofibers[J]. Optica, 4, 1232-1238(2017).

    [113] Cao M, Huang L, Tang M et al. Inter-mode forward Brillouin scattering in nanofibers[J]. Journal of Lightwave Technology, 38, 6911-6917(2020).

    [114] Yang F, Gyger F, Godet A et al. Large evanescently-induced Brillouin scattering at the surrounding of a nanofibre[J]. Nature Communications, 13, 1432(2022).

    [115] Zhang L F, Wang Y, Wu H et al. A ZnO nanowire-based microfiber coupler for all-optical photodetection applications[J]. Nanoscale, 11, 8319-8326(2019).

    [116] Huang Y Y, Chen P W, Liang H et al. Nucleic acid hybridization on a plasmonic nanointerface of optical microfiber enables ultrahigh-sensitive detection and potential photothermal therapy[J]. Biosensors and Bioelectronics, 156, 112147(2020).

    [117] Qi K Y, Zhang Y D, Sun J F et al. Highly sensitive strain sensor based on a sealed optical microfiber coupler[J]. Optical Fiber Technology, 59, 102313(2020).

    [118] Dai M L, Chen Z M, Zhao Y F et al. State-of-the-art optical microfiber coupler sensors for physical and biochemical sensing applications[J]. Biosensors, 10, 179(2020).

    [119] Zhou W C, Wei Y L, Wang Y et al. Ultrasensitive interferometers based on zigzag-shaped tapered optical microfibers operating at the dispersion turning point[J]. Optics Express, 29, 36926-36935(2021).

    [120] Liang H, Zhou L Y, Chen P W et al. Optical microfiber with a gold nanorods-black phosphorous nanointerface: an ultrasensitive biosensor and nanotherapy platform[J]. Analytical Chemistry, 94, 8058-8065(2022).

    [121] Liao Y P, Wang J, Yang H J et al. Salinity sensing based on microfiber knot resonator[J]. Sensors and Actuators A, 233, 22-25(2015).

    [122] Liao Y P, Wang J, Wang S S et al. Simultaneous measurement of seawater temperature and salinity based on microfiber MZ interferometer with a knot resonator[J]. Journal of Lightwave Technology, 34, 5378-5384(2016).

    [123] Yu Y, Bian Q, Lu Y et al. High sensitivity all optical fiber conductivity-temperature-depth (CTD) sensing based on an optical microfiber coupler (OMC)[J]. Journal of Lightwave Technology, 37, 2739-2747(2019).

    [124] Zhou L J, Yu Y, Huang H M et al. Salinity sensing characteristics based on optical microfiber coupler interferometer[J]. Photonics, 7, 77(2020).

    [125] Cao L, Yu Y, Xiao M et al. High sensitivity conductivity-temperature-depth sensing based on an optical microfiber coupler combined fiber loop[J]. Chinese Optics Letters, 18, 011202(2020).

    [126] Hou Y F, Wang J, Wang X et al. Simultaneous measurement of pressure and temperature in seawater with PDMS sealed microfiber Mach-Zehnder interferometer[J]. Journal of Lightwave Technology, 38, 6412-6421(2020).

    [127] Li M W, Yu Y, Lu Y et al. Optical microfiber all-optical phase modulator for fiber optic hydrophone[J]. Nanomaterials, 11, 2215(2021).

    [128] Wu Y, Yao B C, Yu C B et al. Optical graphene gas sensors based on microfibers: a review[J]. Sensors, 18, 941(2018).

    [129] Wang S S, Xiao Y X, Wang J et al. Development of seawater temperature, salinity and pressure sensing based on interferometric microfiber device[J]. Laser & Optoelectronics Progress, 58, 1306015(2021).

    [130] Xu P Z, Cui B W, Bu Y Q et al. Elastic ice microfibers[J]. Science, 373, 187-192(2021).

    [131] Xiao J L, Zhou T, Yao N et al. Optical fibre taper-enabled waveguide photoactuators[J]. Nature Communications, 13, 363(2022).

    Tools

    Get Citation

    Copy Citation Text

    Limin Tong. Recent Progress in Optical Micro/Nanofiber Technology[J]. Acta Optica Sinica, 2022, 42(17): 1706001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Jun. 6, 2022

    Accepted: Jul. 28, 2022

    Published Online: Sep. 16, 2022

    The Author Email: Tong Limin (phytong@zju.edu.cn)

    DOI:10.3788/AOS202242.1706001

    Topics