Laser & Optoelectronics Progress, Volume. 58, Issue 6, 611001(2021)

Semantic-Based Visual Odometry Towards Dynamic Scenes

Lu Jin, Liu Yuhong, and Zhang Rongfen*
Author Affiliations
  • College of Big Data and Information Engineering, Guizhou University, Guiyang, Guizhou 550025, China
  • show less
    Figures & Tables(15)
    System structure of proposed visual odometry
    Network architecture of SegNet
    Results of semantic segmentation. (a) Original image; (b) segmentation result
    RANSAC effect comparison under different scales. (a) Scale is 1 and 0.3, number of inliers is 238; (b) scale is 1 and 0.2, number of inliers is 210; (c) scale is 1 and 0.1, number of inliers is 159; (d) scale is 0.1, number of inliers is 168
    Epipolar geometric constraints. (a) p2 is on the polar line L2; (b) p2 is not strictly on the polar line L2
    Outliers removing. (a) All feature points are extracted; (b) outliers lie on people are removed
    Comparison of ATE. (a) ORB-SLAM2; (b) proposed scheme
    Comparison of relative translation error. (a) ORB-SLAM2; (b) proposed scheme
    • Table 1. Typical value of ATE

      View table

      Table 1. Typical value of ATE

      SequencyORB-SLAM2 /mProposed /mImprovement /%
      RMSEMeanMedianS.D.RMSEMeanMedianS.D.RMSEMeanMedianS.D.
      wX0.5655050.5286960.5159210.2006910.0191480.0158910.0136130.01068296.6196.9997.3694.68
      wH0.3279890.2759860.2325720.1772250.0288450.0241790.0205070.01573091.2191.2491.1891.12
      wR0.8178790.6955930.6422420.4302060.4077810.3523620.2703190.20524750.1449.3457.9152.29
      wS0.4092680.3699130.2936600.1751140.0073020.0064310.0060310.00345998.2298.2697.9598.02
      sX0.0092750.0079390.0072510.0047960.0099620.0085400.0078450.005129-7.41-7.57-8.19-6.94
      sH0.0278820.0242880.0227840.0136920.0145890.0128530.0116110.00690247.6847.0849.0449.59
      sR0.0215130.0161770.0117560.0141810.0165310.0129560.0099050.01026823.1619.9115.7527.59
      sS0.0076980.0067750.0060450.0036550.0061420.0052330.0046830.00321620.2122.7622.5312.01
    • Table 2. Typical value of relative translation error

      View table

      Table 2. Typical value of relative translation error

      SequencyORB-SLAM2 /mProposed /mImprovement /%
      RMSEMeanMedianS.D.RMSEMeanMedianS.D.RMSEMeanMedianS.D.
      wX0.8259810.6929760.6486570.4494780.0280860.0235570.0200730.01529396.6096.6096.9196.60
      wH0.5023630.4032370.4364540.2996150.0403620.0350910.0321310.01994291.9791.3092.6493.34
      wR1.2122791.0061640.9434690.6762050.1389820.0879170.0423140.10278488.5491.2695.5284.80
      wS0.5852810.4037270.1575960.4237430.0105690.0094650.0089330.00470398.1997.6694.3398.89
      sX0.0136020.0118450.0108650.0066880.0146020.0128070.0117290.007015-7.35-8.12-7.95-4.89
      sH0.0407320.0334760.0289650.0232050.0208130.0185330.0169830.00947148.9044.6441.3759.19
      sR0.0308980.0250710.0208120.0180590.0244800.0206170.0173430.01320020.7717.7716.6726.91
      sS0.0120070.0106370.0097720.0055700.0091330.0080020.0071470.00440323.9424.7726.8620.95
    • Table 3. Typical value of relative rotation error

      View table

      Table 3. Typical value of relative rotation error

      SequencyORB-SLAM2 /(°)Proposed /(°)Improvement /%
      RMSEMeanMedianS.D.RMSEMeanMedianS.D.RMSEMeanMedianS.D.
      wX14.81293012.41118911.0751358.0861170.7179360.5542910.4498550.45628295.1595.5395.9494.36
      wH13.37917011.22653814.2204887.2778470.9302200.8066640.7271230.46325293.0592.8194.8993.63
      wR22.02147217.87779116.17545012.8580642.7803871.7983970.9221732.01334387.3789.9494.3084.34
      wS10.3347877.0852631.8305607.5237540.2863920.2579240.2420040.12448297.2396.3686.7898.35
      sX0.5780520.4946350.4222540.2991330.5907900.5098340.4427600.298500-2.20-3.07-4.860.21
      sH1.0307260.9240550.8579980.4566380.7167270.6446710.6009260.31320530.4630.2329.9631.41
      sR0.8821690.7679210.7001100.4341880.7552520.6705730.6236720.34747314.3912.6810.9219.97
      sS0.3362920.3035050.2862660.1448340.3162510.2830730.2643740.1410125.966.737.652.64
    • Table 4. Typical value of ATE

      View table

      Table 4. Typical value of ATE

      SequencyDS-SLAM /mProposed /mImprovement /%
      RMSEMeanMedianS.D.RMSEMeanMedianS.D.RMSEMeanMedianS.D.
      wX0.0221800.0168690.0132720.0144020.0191480.0158910.0136130.01068213.675.80-2.5725.83
      wH0.0320830.0267480.0226480.0177150.0288450.0241790.0205070.01573010.099.609.4511.21
      wR0.4338200.3689180.2491500.2282520.4077810.3523620.2703190.2052476.004.49-8.5010.08
      wS0.0077090.0069790.0065760.0032750.0073020.0064310.0060310.0034595.287.858.29-5.62
      sX0.0103390.0088310.0079810.0053770.0099620.0085400.0078450.0051293.653.301.704.61
      sH0.0148160.0132290.0117320.0066720.0145890.0128530.0116110.0069021.532.841.03-3.45
      sR0.0202420.0157790.0116010.0126800.0165310.0129560.0099050.01026818.3317.8914.6219.02
      sS0.0061420.0052330.0046830.0032160.0062730.0054610.0047280.003085-2.13-4.36-0.964.07
    • Table 5. Typical value of translation

      View table

      Table 5. Typical value of translation

      SequencyDS-SLAM /mProposed /mImprovement /%
      RMSEMeanMedianS.D.RMSEMeanMedianS.D.RMSEMeanMedianS.D.
      wX0.0324880.0255850.0209380.0200220.0280860.0235570.0200730.01529313.557.934.1323.62
      wH0.0454610.0394120.0352350.0226580.0403620.0350910.0321310.01994211.2210.968.8111.99
      wR0.1487490.0941580.0458300.1128320.1389820.0879170.0423140.1027846.576.637.678.91
      wS0.0109770.0099890.0094990.0045520.0105690.0094650.0089330.0047033.725.255.96-3.32
      sX0.0149690.0130950.0120710.0072520.0146020.0128070.0117290.0070152.452.202.833.27
      sH0.0213790.0191800.0177680.0094440.0208130.0185330.0169830.0094712.653.374.42-0.29
      sR0.0288730.0242680.0202040.0156430.0244800.0206170.0173430.01320015.2115.0414.1615.62
      sS0.0092170.0081440.0073630.0043160.0091330.0080020.0071470.0044030.911.742.93-2.02
    • Table 6. Typical value of rotation

      View table

      Table 6. Typical value of rotation

      SequencyDS-SLAM /(°)Proposed /(°)Improvement /%
      RMSEMeanMedianS.D.RMSEMeanMedianS.D.RMSEMeanMedianS.D.
      wX0.7689730.5830350.4602290.5013870.7179360.5542910.4498550.4562826.644.932.259.00
      wH0.9832890.8624110.7692540.4723400.9302200.8066640.7271230.4632525.406.465.481.92
      wR3.0134131.9091410.9964522.3208102.7803871.7983970.9221732.0133437.735.807.4513.25
      wS0.2851630.2613890.2506280.1139900.2863920.2579240.2420040.124482-0.431.333.44-9.20
      sX0.5774670.4930590.4202980.3006000.5907900.5098340.4427600.298500-2.31-3.40-5.340.70
      sH0.7788580.6981670.6497260.3452270.7167270.6446710.6009260.3132057.987.667.519.28
      sR0.8635460.7607130.7010080.4086890.7552520.6705730.6236720.34747312.5411.8511.0314.98
      sS0.3085510.2766590.2598710.1366140.3162510.2830730.2643740.141012-2.50-2.32-1.73-3.22
    • Table 7. Time consuming of moving consistency check

      View table

      Table 7. Time consuming of moving consistency check

      SequencyDS-SLAM /msProposed /msReduced /%
      wX0.0194870.01303033.14
      wH0.0183440.01092940.42
      wR0.0171830.01095736.23
      wS0.0167120.0156956.09
      sX0.0174240.01416318.72
      sH0.0187170.01318229.58
      sR0.0164120.01183227.90
      sS0.0141100.0135174.20
    Tools

    Get Citation

    Copy Citation Text

    Lu Jin, Liu Yuhong, Zhang Rongfen. Semantic-Based Visual Odometry Towards Dynamic Scenes[J]. Laser & Optoelectronics Progress, 2021, 58(6): 611001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: Jul. 10, 2020

    Accepted: --

    Published Online: Mar. 6, 2021

    The Author Email: Zhang Rongfen (rfzhang@gzu.edu.cn)

    DOI:10.3788/LOP202158.0611001

    Topics