Optics and Precision Engineering, Volume. 31, Issue 23, 3482(2023)
Automatic segmentation of choroid by TransGLnet integrating attention mechanism
[1] NICKLA D L, WALLMAN J. The multifunctional choroid[J]. Progress in Retinal and Eye Research, 29, 144-168(2010).
[2] ALONSO-CANEIRO D, READ S A, COLLINS M J. Automatic segmentation of choroidal thickness in optical coherence tomography[J]. Biomedical Optics Express, 4, 2795-2812(2013).
[3] TIAN J, MARZILIANO P, BASKARAN M et al. Automatic measurements of choroidal thickness in EDI-OCT images[C], 5360-5363(2012).
[4] YAN Q F, GU Y Y, ZHAO J Y et al. Automatic choroid layer segmentation in OCT images via context efficient adaptive network[J]. Applied Intelligence, 53, 5554-5566(2023).
[5] [5] 许祥丛, 陈俊彦, 王雪花, 等. 通过SEC-UNet精准分割糖尿病视网膜病变眼底OCT图像脉络膜层[J]. 生物化学与生物物理进展, 2022, 49(12): 2450-2457.XUX C, CHENJ Y, WANGX H, et al. Accurate segmentation of choroidal layer in OCT images of diabetic retinopathy by SEC-UNet[J]. Progress in Biochemistry and Biophysics, 2022, 49(12): 2450-2457.(in Chinese)
[6] ZHU L, LI J M, ZHU R L et al. Synergistically segmenting choroidal layer and vessel using deep learning for choroid structure analysis[J]. Physics in Medicine and Biology, 67(2022).
[7] KHAING T T, OKAMOTO T, YE C et al. ChoroidNET: a dense dilated U-net model for choroid layer and vessel segmentation in optical coherence tomography images[J]. IEEE Access, 9, 150951-150965(2021).
[8] XU X C, WANG X H, LIN J Y et al. Automatic segmentation and measurement of choroid layer in high myopia for OCT imaging using deep learning[J]. Journal of Digital Imaging, 35, 1153-1163(2022).
[9] WU W J, GONG Y, HAO H Y et al. Choroidal layer segmentation in OCT images by a boundary enhancement network[J]. Frontiers in Cell and Developmental Biology, 10, 1060241(2022).
[10] WANG X L, GIRSHICK R, GUPTA A et al. Non-local neural networks[C], 18, 7794-7803(2018).
[11] XU L, WANG L, LI Y et al. Big Model and Small Model: remote modeling and local information extraction module for medical image segmentation[J]. Applied Soft Computing, 136, 110128(2023).
[13] HE K M, ZHANG X Y, REN S Q et al. Deep residual learning for image recognition[C], 27, 770-778(2016).
[15] KERMANY D, ZHANG K, GOLDBAUM M. Labeled optical coherence tomography (oct) and chest x-ray images for classification[J]. Mendeley data, 2, 651(2018).
[16] RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]. October 5, 234-241(9).
[17] WANG S, LI L, ZHUANG X. AttU-Net: attention U-Net for brain tumor segmentation[C], 302-311(2021).
[18] ALOM M Z, HASAN M, YAKOPCIC C et al. Recurrent residual convolutional neural network based on u-net (r2u-net) for medical image segmentation[J]. arXiv preprint arXiv, 2018.
[19] ZUO Q, CHEN S, WANG Z. R2AU-Net: attention recurrent residual convolutional neural network for multimodal medical image segmentation[J]. Security and Communication Networks, 2021, 1-10(2021).
[20] CHEN J, LU Y, YU Q et al. Transunet: Transformers make strong encoders for medical image segmentation[J]. arXiv preprint arXiv:, 2021.
[21] CAO H, WANG Y, CHEN J et al. Swin-unet: Unet-likeic pure transformer for medical image segmentation[C], 205-218(2022).
[22] JAEGER S, CANDEMIR S, ANTANI S et al. Two public chest X-ray datasets for computer-aided screening of pulmonary diseases[J]. Quantitative Imaging in Medicine and Surgery, 4, 475(2014).
Get Citation
Copy Citation Text
Wenbo HUANG, Chaofan QU, Yang YAN. Automatic segmentation of choroid by TransGLnet integrating attention mechanism[J]. Optics and Precision Engineering, 2023, 31(23): 3482
Category:
Received: Jun. 15, 2023
Accepted: --
Published Online: Jan. 5, 2024
The Author Email: Wenbo HUANG (huangwenbo@sina.com)