Journal of the Chinese Ceramic Society, Volume. 53, Issue 7, 1971(2025)
Preparation and Formaldehyde Adsorption of Cellulose–Chitosan Composite Aerogel
[1] [1] EMMS V L, CHOTHIA S Y, HOPKINSON R J. Friend or foe-maldehyde[J]. Nat Chem Biol, 2024, 20(3): 268–270.
[2] [2] BIRKETT N, AL-ZOUGHOOL M, BIRD M, et al. Overview of biological mechanisms of human carcinogens[J]. J Toxicol Environ Health B Crit Rev, 2019, 22(7/8): 288–359.
[3] [3] NA C J, YOO M J, TSANG D C W, et al. High-performance materials for effective sorptive removal of formaldehyde in air[J]. J Hazard Mater, 2019, 366: 452–465.
[4] [4] LIU N R, FANG L, LIU W, et al. Health effects of exposure to indoor formaldehyde in civil buildings: A systematic review and meta-analysis on the literature in the past 40 years[J]. Build Environ, 2023, 233: 110080.
[5] [5] MONDAL I, GROVES M, DRIVER E M, et al. Carcinogenic formaldehyde in U.S. residential buildings: Mass inventories, human health impacts, and associated healthcare costs[J]. Sci Total Environ, 2024, 944: 173640.
[6] [6] FASTH I M, ULRICH N H, JOHANSEN J D. Ten-year trends in contact allergy to formaldehyde and formaldehyde-releasers[J]. Contact Dermatitis, 2018, 79(5): 263–269.
[7] [7] DI B H, WANG Z C, WANG H M, et al. Piezoelectric photocatalytic degradation of formaldehyde based on BFO@OCN heterojunctions[J]. Nano Energy, 2024, 132: 110384.
[8] [8] DE FALCO G, LI W L, CIMINO S, et al. Role of sulfur and nitrogen surface groups in adsorption of formaldehyde on nanoporous carbons[J]. Carbon, 2018, 138: 283–291.
[9] [9] XU Z J, WANG L, HOU H P. Formaldehyde removal by potted plant–soil systems[J]. J Hazard Mater, 2011, 192(1): 314–318.
[10] [10] S S S, RAI N, CHAUHAN I. Multifunctional Aerogels: A comprehensive review on types, synthesis and applications of aerogels[J]. J Sol Gel Sci Technol, 2023, 105(2): 324–336.
[11] [11] ZIEGLER C, WOLF A, LIU W, et al. Modern inorganic aerogels[J]. Angew Chem Int Ed, 2017, 56(43): 13200–13221.
[12] [12] GAO B, FENG X, ZHANG Y, et al. Graphene-based aerogels in water and air treatment: a review[J]. Chem Eng J, 2024, 484: 149604.
[13] [13] WANG C L, EISENREICH F, TOMOVI . Aerogel-to-Sol-to-aerogel (ASA) process for recycling, repairing, reprogramming of high-performance organic aerogels[J]. Adv Funct Materials, 2024, 34(28): 2314447.
[14] [14] SUN J Y, XIU K H, WANG Z Y, et al. Multifunctional wearable humidity and pressure sensors based on biocompatible graphene/bacterial cellulose bioaerogel for wireless monitoring and early warning of sleep apnea syndrome[J]. Nano Energy, 2023, 108: 108215.
[15] [15] SILVA F A G S, BRANCO S, DOURADO F, et al. Life cycle assessment of bacterial cellulose and comparison to other cellulosic sources[J]. J Clean Prod, 2025: 144876.
[16] [16] ZHOU M, CHEN D, CHEN Q, et al. Reversible surface engineering of cellulose elementary fibrils: from ultralong nanocelluloses to advanced cellulosic materials[J]. Adv Mater, 2024, 36(21): 2312220.
[17] [17] WANG Y X, QI J J, ZHANG M, et al. Cellulose-based aerogels, films, and fibers for advanced biomedical applications[J]. Chem Eng J, 2024, 497: 154434.
[18] [18] FONTES-CANDIA C, ERBOZ E, MARTNEZ-ABAD A, et al. Superabsorbent food packaging bioactive cellulose-based aerogels from Arundo donax waste biomass[J]. Food Hydrocoll, 2019, 96: 151–160.
[20] [20] GONG C, NI J P, TIAN C, et al. Research in porous structure of cellulose aerogel made from cellulose nanofibrils[J]. Int J Biol Macromol, 2021, 172: 573–579.
[21] [21] HE X H, CHEN T T, JIANG T Y, et al. Preparation and adsorption properties of magnetic hydrophobic cellulose aerogels based on refined fibers[J]. Carbohydr Polym, 2021, 260: 117790.
[22] [22] BENITO-GONZLEZ I, LPEZ-RUBIO A, GMEZ- MASCARAQUE L G, et al. PLA coating improves the performance of renewable adsorbent pads based on cellulosic aerogels from aquatic waste biomass[J]. Chem Eng J, 2020, 390: 124607.
[23] [23] LE V T, JOO S W, BERKANI M, et al. Sustainable cellulose-based hydrogels for water treatment and purification[J]. Ind Crops Prod, 2023, 205: 117525.
[24] [24] SANKHLA S, NEOGI S. Ambient-dried, scalable and biodegradable cellulose nanofibers aerogel for oil-spill cleanup[J]. J Environ Chem Eng, 2024, 12(3): 112745.
[25] [25] YAP J X, LEO C P, CHAN D J C, et al. Chlorella vulgaris nanocellulose in hydrogel beads for dye removal[J]. Sep Purif Technol, 2023, 324: 124613.
[28] [28] FREITAS P A V, GONZLEZ-MARTNEZ C, CHIRALT A. Influence of the cellulose purification process on the properties of aerogels obtained from rice straw[J]. Carbohydr Polym, 2023, 312: 120805.
[29] [29] DOGENSKI M, NAVARRO-DAZ H J, DE OLIVEIRA J V, et al. Properties of starch-based aerogels incorporated with agar or microcrystalline cellulose[J]. Food Hydrocoll, 2020, 108: 106033.
[30] [30] SAHARIAH P, MSSON M. Antimicrobial chitosan and chitosan derivatives: A review of the structure-activity relationship[J]. Biomacromolecules, 2017, 18(11): 3846–3868.
[31] [31] BAUR G B, SPRING J, KIWI-MINSKER L. Amine functionalized activated carbon fibers as effective structured adsorbents for formaldehyde removal[J]. Adsorption, 2018, 24(8): 725–732.
[32] [32] YANG Z J, MIAO H C, RUI Z B, et al. Enhanced formaldehyde removal from air using fully biodegradable chitosan grafted -cyclodextrin adsorbent with weak chemical interaction[J]. Polymers, 2019, 11(2): 276.
[33] [33] SONG J X, LIU Z Z, LI Y N, et al. Preparation of amino cellulose aerogel and its formaldehyde adsorption properties[J]. Ind Crops Prod, 2024, 215: 118630.
[34] [34] CAO Y W, CHEN X Y, LI Y Z, et al. Regulating and controlling the microstructure of nanocellulose aerogels by varying the intensity of hydrogen bonds[J]. ACS Sustainable Chem Eng, 2023, 11(4): 1581–1590.
[35] [35] HE G H, WANG Z, ZHENG H, et al. Preparation, characterization and properties of aminoethyl chitin hydrogels[J]. Carbohydr Polym, 2012, 90(4): 1614–1619.
[36] [36] WANG J, LIU M, DUAN C, et al. Preparation and characterization of cellulose-based adsorbent and its application in heavy metal ions removal[J]. Carbohydr Polym, 2019, 206: 837–843.
[37] [37] LIU Y, FU H Q, ZHANG W, et al. Effect of crystalline structure on the catalytic hydrolysis of cellulose in subcritical water[J]. ACS Sustainable Chem Eng, 2022, 10(18): 5859–5866.
[38] [38] MIAO Y J, LUO H C, PUDUKUDY M, et al. CO2 capture performance and characterization of cellulose aerogels synthesized from old corrugated containers[J]. Carbohydr Polym, 2020, 227: 115380.
[39] [39] HSU S H, LIN C H, TSENG C S. Air plasma treated chitosan fibers-stacked scaffolds[J]. Biofabrication, 2012, 4(1): 015002.
[40] [40] KIM U J, KIMURA S, WADA M. Characterization of cellulose– chitosan gels prepared using a LiOH/urea aqueous solution[J]. Cellulose, 2019, 26(10): 6189–6199.
[41] [41] CHIEN H C, CHENG W Y, WANG Y H, et al. Ultrahigh specific capacitances for supercapacitors achieved by nickel cobaltite/carbon aerogel composites[J]. Adv Funct Materials, 2012, 22(23): 5038–5043.
[42] [42] LI J, LU Y, YANG D J, et al. Lignocellulose aerogel from wood-ionic liquid solution (1-allyl-3-methylimidazolium chloride) under freezing and thawing conditions[J]. Biomacromolecules, 2011, 12(5): 1860–1867.
[43] [43] CHEN J R, ZHOU Z N, MIAO Y, et al. Preparation of CS@BAC composite aerogel with excellent flame-retardant performance, good filtration for PM2.5 and strong adsorption for formaldehyde[J]. Process Saf Environ Prot, 2023, 173: 354–365.
Get Citation
Copy Citation Text
SHANG Wei, PAN Kangkang, WANG Qicheng, SUN Mojie. Preparation and Formaldehyde Adsorption of Cellulose–Chitosan Composite Aerogel[J]. Journal of the Chinese Ceramic Society, 2025, 53(7): 1971
Category:
Received: Dec. 10, 2024
Accepted: Aug. 12, 2025
Published Online: Aug. 12, 2025
The Author Email: