Acta Optica Sinica, Volume. 39, Issue 4, 0412001(2019)

Feature Extraction Based on Linear Embedding and Tensor Manifold for Hyperspectral Image

Shixin Ma1、*, Chuntong Liu1, Hongcai Li1, Geng Zhang2, and Zhenxin He1
Author Affiliations
  • 1 College of Missile Engineering, Rocket Force University of Engineering, Xi′an, Shaanxi 710025, China
  • 2 Key Laboratory of Spectral Imaging Technology, Xian Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi′an, Shaanxi 710119, China
  • show less
    Figures & Tables(12)
    Diagrams of manifold difference. (a) LLE algorithm; (b) GLE algorithm
    Dimensionality reduction frame of tensor manifold
    Indian Pines hyperspectral data. (a) Pseudo-color image; (b) ground-truth map
    PaviaU hyperspectral data. (a) Pseudo-color image; (b) ground-truth map
    Influence of sparse parameters λ on classification performance (Indian Pines data)
    Dimensionality reduction performance of Indian Pines data obtained with different algorithms. (a) Ground-truth map; (b) PCA algorithm; (c) MNF algorithm; (d) LLE algorithm; (e) LE algorithm; (f) LPP algorithm; (g) RP algorithm; (h) proposed algorithm
    Dimensionality reduction performance of PaviaU data obtained with different algorithms. (a) Ground-truth map; (b) PCA algorithm; (c) MNF algorithm; (d) LLE algorithm; (e) LE algorithm; (f) LPP algorithm; (g) RP algorithm; (h) proposed algorithm
    Projection results obtained with different dimensionality reduction algorithms (Indian Pines data). (a) Original data (band 1 & 2); (b) PCA algorithm; (c) MNF algorithm; (d) LLE algorithm; (e) LE algorithm; (f) LPP algorithm; (g) RP algorithm; (h) proposed algorithm
    Classification accuracy of different algorithms obtained at different embedding dimensions. (a) Indian Pines data; (b) PaviaU data
    • Table 1. Classification accuracy of different dimensionality reduction algorithms

      View table

      Table 1. Classification accuracy of different dimensionality reduction algorithms

      DatasetSVM classificationPCAMNFLLELELPPRPLETM
      Indian Pines (M=30)OCA /%76.6983.7471.4468.8879.0981.1685.10
      ACA /%69.2679.7470.0863.5275.4877.9581.96
      PaviaU(M=20)OCA /%92.4693.0985.6782.5893.5690.5695.55
      ACA /%89.0491.9482.1575.9890.5586.9893.93
    • Table 2. Time complexity of different algorithms

      View table

      Table 2. Time complexity of different algorithms

      AlgorithmTime complexity
      PCAO(N2D)
      MNFO(2N2D)
      LLEO[NDlb k·lb D+NDk3+DN2+N3]
      LEO[NDlb k·lb D+NDk3+MD2]
      LPPO[NDlb k·lb D+NDk3+2DMN+kMD2]
      RPO(DMN)
      LETMO(t4N4+t2N2D2+2t3N3+2t2N2D+kMD2)
    • Table 3. Computation time of different algorithms

      View table

      Table 3. Computation time of different algorithms

      DataReduced dimensionalityComputation times /s
      PCANMFLLELELPPRPLETM
      Indian Pines100.2730.38644.91213.52013.0650.07942.367
      300.2740.39145.77413.73313.1770.07942.803
      500.2770.40346.26514.21013.3130.09043.116
      PaviaU100.7631.0393633.6112187.6672454.7080.239304.150
      300.8071.0683672.1862193.2032454.8450.294307.489
      500.8111.0853714.5032199.1862454.8960.401310.316
    Tools

    Get Citation

    Copy Citation Text

    Shixin Ma, Chuntong Liu, Hongcai Li, Geng Zhang, Zhenxin He. Feature Extraction Based on Linear Embedding and Tensor Manifold for Hyperspectral Image[J]. Acta Optica Sinica, 2019, 39(4): 0412001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: Sep. 7, 2018

    Accepted: Dec. 12, 2018

    Published Online: May. 10, 2019

    The Author Email:

    DOI:10.3788/AOS201939.0412001

    Topics