Acta Optica Sinica, Volume. 43, Issue 13, 1305002(2023)

Electromagnetically Induced Non-Hermitian Diffraction Grating Assisted by Incoherent Pumping

Xuedong Tian1, Xingyu Liu2, and Yimou Liu2、*
Author Affiliations
  • 1College of Physics Science and Technology, Guangxi Normal University, Guilin 541004, Guangxi, China
  • 2Center for Quantum Sciences, Northeast Normal University, Changchun 130024, Jilin, China
  • show less
    References(43)

    [1] Tang Y J, Liang C, Liu Y C. Research progress of parity-time symmetry and anti-symmetry[J]. Acta Physica Sinica, 71, 171101(2022).

    [2] Bender C M. Making sense of non-Hermitian Hamiltonians[J]. Reports on Progress in Physics, 70, 947-1018(2007).

    [3] Nguyen N B, Maier S A, Hong M H et al. Recovering parity-time symmetry in highly dispersive coupled optical waveguides[J]. New Journal of Physics, 18, 125012(2016).

    [4] Eichelkraut T, Heilmann R, Weimann S et al. Mobility transition from ballistic to diffusive transport in non-Hermitian lattices[J]. Nature Communications, 4, 2533(2013).

    [5] Dang T T, Wang J F. Control of Gaussian optical waves in Gaussian parity-time symmetric waveguide[J]. Acta Optica Sinica, 40, 0319001(2020).

    [6] Peng B, Özdemir Ş K, Lei F C et al. Parity–time-symmetric whispering-gallery microcavities[J]. Nature Physics, 10, 394-398(2014).

    [7] Chang L, Jiang X S, Hua S Y et al. Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators[J]. Nature Photonics, 8, 524-529(2014).

    [8] Choi Y, Hahn C, Yoon J W et al. Observation of an anti-PT-symmetric exceptional point and energy-difference conserving dynamics in electrical circuit resonators[J]. Nature Communications, 9, 2182(2018).

    [9] Sheng J T, Miri M A, Christodoulides D N et al. PT-symmetric optical potentials in a coherent atomic medium[J]. Physical Review A, 88, 041803(2013).

    [10] Ge L, Türeci H E. Antisymmetric PT-photonic structures with balanced positive- and negative-index materials[J]. Physical Review A, 88, 053810(2013).

    [11] Wu J H, Artoni M, La Rocca G C. Non-Hermitian degeneracies and unidirectional reflectionless atomic lattices[J]. Physical Review Letters, 113, 123004(2014).

    [12] Wu J H, Artoni M, La Rocca G C. Parity-time-antisymmetric atomic lattices without gain[J]. Physical Review A, 91, 033811(2015).

    [13] Peng P, Cao W X, Shen C et al. Anti-parity–time symmetry with flying atoms[J]. Nature Physics, 12, 1139-1145(2016).

    [14] Longhi S. Bloch oscillations in complex crystals with PT symmetry[J]. Physical Review Letters, 103, 123601(2009).

    [15] Zhang Y Q, Zhang D, Zhang Z Y et al. Optical Bloch oscillation and Zener tunneling in an atomic system[J]. Optica, 4, 571-575(2017).

    [16] Hodaei H, Miri M A, Heinrich M et al. Parity-time-symmetric microring lasers[J]. Science, 346, 975-978(2014).

    [17] Jing H, Özdemir S K, Lü X Y et al. PT-symmetric phonon laser[J]. Physical Review Letters, 113, 053604(2014).

    [18] Feng L, Wong Z J, Ma R M et al. Single-mode laser by parity-time symmetry breaking[J]. Science, 346, 972-975(2014).

    [19] Lin Z, Ramezani H, Eichelkraut T et al. Unidirectional invisibility induced by PT-symmetric periodic structures[J]. Physical Review Letters, 106, 213901(2011).

    [20] Feng L, Xu Y L, Fegadolli W S et al. Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies[J]. Nature Materials, 12, 108-113(2013).

    [21] Yin X B, Zhang X. Unidirectional light propagation at exceptional points[J]. Nature Materials, 12, 175-177(2013).

    [22] Sarısaman M, Tas M. Unidirectional invisibility and PT symmetry with graphene[J]. Physical Review B, 97, 045409(2018).

    [23] Krešić I, Makris K G, Leonhardt U et al. Transforming space with non-Hermitian dielectrics[J]. Physical Review Letters, 128, 183901(2022).

    [24] Fleischhauer M, Imamoglu A, Marangos J P. Electromagnetically induced transparency: optics in coherent media[J]. Reviews of Modern Physics, 77, 633-673(2005).

    [25] Ling H Y, Li Y Q, Xiao M. Electromagnetically induced grating: homogeneously broadened medium[J]. Physical Review A, 57, 1338-1344(1998).

    [26] de Araujo L E E. Electromagnetically induced phase grating[J]. Optics Letters, 35, 977-979(2010).

    [27] Liu Y M, Tian X D, Wang X et al. Cooperative nonlinear grating sensitive to light intensity and photon correlation[J]. Optics Letters, 41, 408-411(2016).

    [28] Asghar S, Ziauddin, Qamar S et al. Electromagnetically induced grating with Rydberg atoms[J]. Physical Review A, 94, 033823(2016).

    [29] Zhang Y P, Wang Z G, Nie Z Q et al. Four-wave mixing dipole soliton in laser-induced atomic gratings[J]. Physical Review Letters, 106, 093904(2011).

    [30] Liu Y M, Gao F, Fan C H et al. Asymmetric light diffraction of an atomic grating with PT symmetry[J]. Optics Letters, 42, 4283-4286(2017).

    [31] Bushuev V A, Dergacheva L V, Mantsyzov B I. Asymmetric pendulum effect and transparency change of PT-symmetric photonic crystals under dynamical Bragg diffraction beyond the paraxial approximation[J]. Physical Review A, 95, 033843(2017).

    [32] Zhang Z Y, Yang L, Feng J L et al. Parity-time-symmetric optical lattice with alternating gain and loss atomic configurations[J]. Laser & Photonics Reviews, 12, 1800155(2018).

    [33] Shui T, Yang W X, Liu S P et al. Asymmetric diffraction by atomic gratings with optical PT symmetry in the Raman-Nath regime[J]. Physical Review A, 97, 033819(2018).

    [34] Ma D D, Yu D M, Zhao X D et al. Unidirectional and controllable higher-order diffraction by a Rydberg electromagnetically induced grating[J]. Physical Review A, 99, 033826(2019).

    [35] Liu Y M, Gao F, Wu J H et al. Lopsided diffractions of distinct symmetries in two-dimensional non-Hermitian optical gratings[J]. Physical Review A, 100, 043801(2019).

    [36] Hang C, Li W B, Huang G X. Nonlinear light diffraction by electromagnetically induced gratings with PT symmetry in a Rydberg atomic gas[J]. Physical Review A, 100, 043807(2019).

    [37] Gao J, Hang C, Huang G X. Linear and nonlinear Bragg diffraction by electromagnetically induced gratings with PT symmetry and their active control in a Rydberg atomic gas[J]. Physical Review A, 105, 063511(2022).

    [38] Yang Y Z, Jia H, Bi Y F et al. Experimental demonstration of an acoustic asymmetric diffraction grating based on passive parity-time-symmetric medium[J]. Physical Review Applied, 12, 034040(2019).

    [39] Hua S, Liu Y M, Lio G E et al. Tailored diffraction asymmetries from spatially odd-symmetric phase gratings[J]. Physical Review Research, 4, 023113(2022).

    [40] Horsley S A R, Artoni M, La Rocca G C. Spatial Kramers-Kronig relations and the reflection of waves[J]. Nature Photonics, 9, 436-439(2015).

    [41] Ye D X, Cao C, Zhou T Y et al. Observation of reflectionless absorption due to spatial Kramers-Kronig profile[J]. Nature Communications, 8, 1-10(2017).

    [42] Baek Y, Park Y. Intensity-based holographic imaging via space-domain Kramers-Kronig relations[J]. Nature Photonics, 15, 354-360(2021).

    [43] Zhang Y, Wu J H, Artoni M et al. Controlled unidirectional reflection in cold atoms via the spatial Kramers-Kronig relation[J]. Optics Express, 29, 5890-5900(2021).

    Tools

    Get Citation

    Copy Citation Text

    Xuedong Tian, Xingyu Liu, Yimou Liu. Electromagnetically Induced Non-Hermitian Diffraction Grating Assisted by Incoherent Pumping[J]. Acta Optica Sinica, 2023, 43(13): 1305002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Diffraction and Gratings

    Received: Feb. 3, 2023

    Accepted: Mar. 6, 2023

    Published Online: Jul. 12, 2023

    The Author Email: Liu Yimou (liuym605@nenu.edu.cn)

    DOI:10.3788/AOS230492

    Topics