Acta Optica Sinica, Volume. 44, Issue 19, 1915002(2024)

Design of Large Deformable Lung Image Registration Network with Adaptive Window

Jianbing Yi1,2、*, Xi Chen1,2, Feng Cao1,2, Shuxin Yang1,2、**, and Xin Chen1,2
Author Affiliations
  • 1School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi , China
  • 2Jiangxi Provincial Key Laboratory of Multidimensional Intelligent Perception and Control, Ganzhou 341000, Jiangxi , China
  • show less
    Figures & Tables(18)
    Example of edge convolution operation
    Flowchart of registration method
    Feature correlation coefficient calculation module based adaptive window
    U-Net network based on multiscale dense connection fusion
    MSRN. (a) Multi-scale residual convolution; (b) multi-scale convolution network
    DGCN structure
    CT images before and after preprocessing. (a) Original image; (b) preprocessed image
    Boxplot and scatterplot of TRE for 10 cases on DIR-lab dataset. (a) Boxplot of TRE from maximum exhalation phase to maximum inhalation phase on DIR-lab dataset; (b) scatterplot of TRE before and after registration on DIR-lab dataset
    Boxplot and scatterplot of TRE for 10 cases on COPDgene dataset. (a) Boxplot of TRE from maximum exhalation phase to maximum inhalation phase on COPDgene dataset; (b) scatterplot of TRE before and after registration on COPDgene dataset
    Boxplot and scatterplot of TRE for 6 cases on Creatis dataset. (a) Boxplot of TRE from maximum exhalation phase to maximum inhalation phase on Creatis dataset; (b) scatterplot of TRE before and after registration on Creatis dataset
    Effect of dense graph convolution module on number of TRE outliers in COPDgene dataset
    Registration results for case1 on DIR-lab dataset. (a)‒(c) Fixed images; (d)‒(f) moving images; (g)‒(i) deformation field color-mapped visualizations; (j)‒(l) deformation field grid visualizations; (m)‒(o) warped images; (p)‒(r) heat maps of intensity difference between moving image and fixed image; (s)‒(u) heat maps of intensity difference between warped image and fixed image
    Registration results for different algorithms. (a)‒(c) Moving images; (d)‒(f) fixed images; (g)‒(i) registration results of Graphregnet algorithm; (j)‒(l) registration results of our method
    • Table 1. TRE for different algorithms on DIR-lab dataset

      View table

      Table 1. TRE for different algorithms on DIR-lab dataset

      CaseInitialGraphregnetLRNDuanHPRNOurs
      Mean8.46 (6.58)1.49 (—)1.78 (1.56)1.59 (—)2.04 (1.42)1.21 (0.83)
      13.89 (2.78)0.86 (—)1.14 (0.71)1.05 (—)1.22 (0.71)0.98 (0.52)
      24.34 (3.90)0.90 (—)1.04 (1.13)0.87 (—)1.24 (0.76)0.94 (0.47)
      36.94 (4.05)1.13 (—)1.44 (0.84)1.18 (—)1.49 (0.61)1.17 (0.66)
      49.83 (4.86)1.61 (—)1.54 (1.20)1.71 (—)1.70 (0.68)1.38 (0.95)
      57.48 (5.51)1.67 (—)1.60 (1.63)1.54 (—)1.78 (1.91)1.37 (1.22)
      610.89 (6.97)1.64 (—)2.34 (1.29)1.66 (—)2.02 (1.41)1.25 (0.74)
      711.03 (7.43)1.69 (—)1.80 (0.90)1.56 (—)2.88 (2.71)1.35 (0.90)
      814.99 (9.01)1.58 (—)3.76 (2.52)2.97 (—)3.96 (2.89)1.33 (1.01)
      97.92 (3.98)1.87 (—)1.62 (1.19)1.74 (—)2.11 (1.13)1.18 (0.65)
      107.30 (6.35)1.97 (—)1.57 (1.54)1.59 (—)2.03 (1.44)1.16 (0.73)
    • Table 2. TRE for different algorithms on COPDgene dataset

      View table

      Table 2. TRE for different algorithms on COPDgene dataset

      CaseInitialVoxelMorphLapIRNGraphregnetOurs
      Mean23.367.984.991.761.53
      126.339.956.851.711.60
      221.799.966.902.752.11
      312.644.411.511.421.21
      429.587.086.382.061.67
      530.089.196.811.811.63
      628.468.124.191.431.35
      721.607.102.731.641.27
      826.467.924.321.541.43
      914.866.933.601.451.38
      1021.819.166.591.791.63
    • Table 3. TRE for different algorithms on Creatis dataset

      View table

      Table 3. TRE for different algorithms on Creatis dataset

      CaseInitialRPMD-FCNGraphregnetOurs
      Mean8.15 (5.60)2.47 (2.27)1.50 (0.85)1.07 (0.73)1.00 (0.69)
      16.34 (2.95)1.84 (1.56)1.34 (0.47)0.87 (0.41)0.86 (0.38)
      214.04 (7.20)3.88 (2.91)1.74 (1.10)1.25 (0.93)1.21 (0.88)
      37.67 (5.05)2.69 (2.66)1.57 (0.87)1.02 (0.60)0.94 (0.73)
      47.33 (4.89)1.89 (1.85)1.64 (0.98)1.11 (0.77)0.95 (0.57)
      57.09 (5.10)2.54 (2.24)1.26 (0.84)1.18 (0.92)1.10 (0.89)
      66.68 (3.68)2.01 (1.49)1.45 (0.81)0.98 (0.51)0.94 (0.46)
    • Table 4. Ablation experiments on DIR-lab, COPDgene, and Creatis datasets

      View table

      Table 4. Ablation experiments on DIR-lab, COPDgene, and Creatis datasets

      MethodTRE /mm
      BaseCorrelation coefficientMulti-scale residual convolutionDense graph convolutionDIR-labCOPDgeneCreatis
      1.30 (0.86)1.96 (2.41)1.07 (0.73)
      1.27 (0.88)1.75 (2.05)1.06 (0.73)
      1.23 (0.84)1.55 (1.70)1.01 (0.69)
      1.21 (0.83)1.53 (1.42)1.00 (0.69)
    • Table 5. Alignment degree of boundaries and topological preservation capability for different algorithms

      View table

      Table 5. Alignment degree of boundaries and topological preservation capability for different algorithms

      DatasetMethodDSCHD95Jφ<0
      DIR-labVoxelMorph0.945 (0.023)9.126 (3.668)0.11
      LapIRN0.951 (0.019)6.519 (4.289)0.12
      Graphregnet0.954 (0.017)5.868 (6.059)0.12
      Ours0.967 (0.017)4.755 (5.940)0
      COPDgeneVoxelMorph0.917 (0.026)12.861 (3.645)0.20
      LapIRN0.936 (0.028)11.004 (5.157)0.17
      Graphregnet0.942 (0.009)7.503 (4.001)0.15
      Ours0.957 (0.008)6.446 (4.166)0
      CreatisVoxelMorph0.956 (0.028)5.172 (2.814)0.08
      LapIRN0.962 (0.024)2.938 (2.744)0
      Graphregnet0.965 (0.014)3.005 (0.686)0
      Ours0.970 (0.013)2.540 (0.618)0
    Tools

    Get Citation

    Copy Citation Text

    Jianbing Yi, Xi Chen, Feng Cao, Shuxin Yang, Xin Chen. Design of Large Deformable Lung Image Registration Network with Adaptive Window[J]. Acta Optica Sinica, 2024, 44(19): 1915002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Mar. 27, 2024

    Accepted: May. 20, 2024

    Published Online: Oct. 12, 2024

    The Author Email: Yi Jianbing (yijianbing8@jxust.edu.cn), Yang Shuxin (yangshuxin@jxust.edu.cn)

    DOI:10.3788/AOS240778

    CSTR:32393.14.AOS240778

    Topics