Laser & Optoelectronics Progress, Volume. 59, Issue 12, 1215001(2022)

Multiscale Feedforward Structure-Based Single Image Rain Removal Algorithm

Zhicheng Jiang1, Zhiwei Li1,2、*, Chen Chen1, Jinxiang Zhou1, and Wuneng Zhou2
Author Affiliations
  • 1College of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
  • 2College of Information Science and Technology, Donghua University, Shanghai 200051, China
  • show less
    Figures & Tables(11)
    SE block structure diagram
    MSRAS structure diagrams. (a) MSRAS1; (b) MSRAS2; (c) MSRAS3; (d) MSRAS4
    Overall network structure diagram
    Comparison of rain removal effects of different structures. (a) Real pictures; (b) rain pictures; (c) ResNet; (d) without MSRAS; (e) ours
    Rain removal effect diagram of different algorithms under the composite dataset. (a) Real pictures; (b) rain pictures; (c) DID-MDN; (d) JORDER; (e) RESCAN; (f) ours
    Rain removal renderings of different algorithms under real rain maps. (a) Real pictures; (b) DID-MDN; (c) JORDER; (d) RESCAN; (e) ours
    • Table 1. Parameter setting table of MSRAS

      View table

      Table 1. Parameter setting table of MSRAS

      MSRASFilter sizeNumber of filtersNumber of output channels
      MSRAS17×71648
      5×516
      3×316
      MSRAS27×71696
      5×516
      3×364
      MSRAS35×51696
      3×316
      1×164
      MSRAS43×31680
      1×164
    • Table 2. Network parameter table

      View table

      Table 2. Network parameter table

      Input sizeFilter sizeNumber of filtersActivation functionOutputOutput size
      [128,64,64,3]3×364ReLUF0[128,64,64,64]
      [128,64,64,64]3×364ReLUF1[128,64,64,64]
      [128,64,64,64]3×364ReLUF2[128,64,64,64]
      [128,64,64,64]F3[128,64,64,128]
      [128,64,64,128]3×364ReLUF4[128,64,64,64]
      [128,64,64,64]3×364ReLUF5[128,64,64,64]
      [128,64,64,64]F6[128,64,64,128]
      [128,64,64,128]3×364ReLUF7[128,64,64,64]
      [128,64,64,64]3×364ReLUF8[128,64,64,64]
      [128,64,64,64]F9[128,64,64,384]
      [128,64,64,384]3×364ReLUF10[128,64,64,64]
      [128,64,64,64]3×364ReLUF11[128,64,64,64]
      [128,64,64,64]F12[128,64,64,384]
      [128,64,64,384]3×316ReLUF13[128,64,64,16]
      [128,64,64,16]3×33ReLUF14[128,64,64,3]
    • Table 3. Quantitative values of rain removal effects of different structures

      View table

      Table 3. Quantitative values of rain removal effects of different structures

      PictureSSIM
      Rain pictureResNetWithout MSRASOurs
      Photographer0.70360.89150.87220.9443
      Tiger0.69680.86360.90570.9569
      Cottage0.78230.89320.92190.9788
      Bridge0.77330.89530.90320.9487
      200 composite rain pictures0.71350.87220.90630.9504
      PicturePSNR /dB
      Rain pictureResNetWithout MSRASOurs
      Photographer19.191127.924927.465233.6541
      Tiger20.094526.149528.586334.0457
      Cottage19.288626.336530.148734.2584
      Bridge18.696727.671328.995732.5586
      200 composite rain pictures18.325626.184128.942633.9953
    • Table 4. Quantitative values of rain removal effects of different algorithms under the composite dataset

      View table

      Table 4. Quantitative values of rain removal effects of different algorithms under the composite dataset

      PictureSSIM
      DID-MDNJORDERRESCANOurs
      Path0.90690.91660.93890.9392
      Model0.88720.92330.92580.9473
      Man0.90220.93410.93890.9421
      Arab0.85750.91780.94980.9587
      Rain100L0.88210.97020.97520.9821
      Rain100H0.72850.76330.87260.8832
      Rain8000.88580.88350.89420.9289
      Rain120000.81250.83250.84320.9072
      PicturePSNR/dB
      DID-MDNJORDERRESCANOurs
      Path29.881330.028831.856432.0873
      Model28.157532.57333.984734.2635
      Man31.246234.783435.144833.2516
      Arab27.148533.217535.524835.6874
      Rain100L25.656436.114336.214536.9326
      Rain100H17.871525.741226.412128.9627
      Rain80026.558625.998430.248631.7585
      Rain1200024.226325.889626.742328.9245
    • Table 5. Efficiency values of different algorithms

      View table

      Table 5. Efficiency values of different algorithms

      AlgorithmResNetDID-MDNJORDERRESCANOurs
      6 pictures14070665731
      200 pictures73405665499547403910
    Tools

    Get Citation

    Copy Citation Text

    Zhicheng Jiang, Zhiwei Li, Chen Chen, Jinxiang Zhou, Wuneng Zhou. Multiscale Feedforward Structure-Based Single Image Rain Removal Algorithm[J]. Laser & Optoelectronics Progress, 2022, 59(12): 1215001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Apr. 13, 2021

    Accepted: Jun. 2, 2021

    Published Online: May. 23, 2022

    The Author Email: Zhiwei Li (zhiwei.li@sues.edu.cn)

    DOI:10.3788/LOP202259.1215001

    Topics