Journal of Inorganic Materials, Volume. 39, Issue 6, 591(2024)
[1] CHEN B W, NI D W, BAO W C et al. Engineering Cf/ZrB2- SiC-Y2O3 for thermal structures of hypersonic vehicles with excellent long-term ultrahigh temperature ablation resistance[J]. Adv. Sci., 10: 202304254(2023).
[2] BINNER J, PORTER M, BAKER B et al. Selection, processing, properties and applications of ultra-high temperature ceramic matrix composites, UHTCMCs—a review[J]. Int. Mater. Rev., 65, 389(2019).
[3] NI D W, CHENG Y, ZHANG J P et al. Advances in ultra-high temperature ceramics, composites, and coatings[J]. J. Adv. Ceram., 11, 1(2022).
[4] OSES C, TOHER C, CURTAROLO S. High-entropy ceramics[J]. Nat. Rev. Mater., 5, 295(2020).
[6] ZENG Y, WANG D N, XIONG X et al. Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3,000 ℃[J]. Nat. Commun., 8: 15836(2017).
[8] XIANG H M, XING Y, DAI F Z et al. High-entropy ceramics: present status, challenges, and a look forward[J]. J. Adv. Ceram., 10, 385(2021).
[9] WRIGHT A J, LUO J. A step forward from high-entropy ceramics to compositionally complex ceramics: a new perspective[J]. J. Mater. Sci., 55, 9812(2020).
[10] KAUFMANN K, MARYANOVSKY D, MELLOR W M et al. Discovery of high-entropy ceramics
[11] GILD J, ZHANG Y, HARRINGTON T et al. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics[J]. Sci. Rep., 6: 37946(2016).
[12] ZHANG R Z, REECE M J. Review of high entropy ceramics: design, synthesis, structure and properties[J]. J. Mater. Chem. A, 7, 22148(2019).
[14] CHEN L, WANG K, SU W T et al. Research progress of transition metal non-oxide high-entropy ceramics[J]. J. Inorg. Mater., 35, 748(2019).
[15] WANG Y C. Processing and properties of high entropy carbides[J]. Adv. Appl. Ceram., 121, 57(2022).
[16] CAI F Y, NI D W, CHEN B W et al. Fabrication and properties of Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC high-entropy ceramic matrix composites
[17] YU D, YIN J, ZHANG B H et al. Recent development of high- entropy transitional carbides: a review[J]. J. Ceram. Soc. Jpn., 128, 329(2020).
[18] CASTLE E, CSANADI T, GRASSO S et al. Processing and properties of high-entropy ultra-high temperature carbides[J]. Sci. Rep., 8: 8609(2018).
[19] PENG C, GAO X, WANG M Z et al. Diffusion-controlled alloying of single-phase multi-principal transition metal carbides with high toughness and low thermal diffusivity[J]. Appl. Phys. Lett., 114, 011905(2019).
[20] WANG Y C, CSANADI T, ZHANG H F et al. Enhanced hardness in high-entropy carbides through atomic randomness[J]. Adv. Theory Simul., 3, 2000111(2020).
[21] YEH J W, CHEN S K, LIN S J et al. Nanostructured high- entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Adv. Eng. Mater., 6, 299(2004).
[22] CANTOR B, CHANG I T H, KNIGHT P et al. Microstructural development in equiatomic multicomponent alloys[J]. Mater. Sci. Eng. A Struct. Mater., 375-377: 213(2004).
[23] ROST C M, SACHET E, BORMAN T et al. Entropy-stabilized oxides[J]. Nat. Commun., 6: 8485(2015).
[24] WANG Y J, ZHANG G J. Non-order is the new order: high- entropy ceramics[J]. J. Inorg. Mater., 36, 337(2021).
[25] ZHANG W R, LIAW P K, ZHANG Y. Science and technology in high-entropy alloys[J]. Sci. China-Mater., 61, 2(2018).
[26] MIRACLE D B, SENKOV O N. A critical review of high entropy alloys and related concepts[J]. Acta Mater., 122: 448(2017).
[27] HARRINGTON T J, GILD J, SARKER P et al. Phase stability and mechanical properties of novel high entropy transition metal carbides[J]. Acta Mater., 166: 271(2019).
[28] YEH J W. Recent progress in high-entropy alloys[J]. Ann. Chim-Sci. Mat., 31, 633(2006).
[29] TSAI M H, YEH J W. High-entropy alloys: a critical review[J]. Mater. Res. Lett., 2, 107(2014).
[30] YE B L, WEN T Q, HUANG K H et al. First-principles study, fabrication, and characterization of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high- entropy ceramic[J]. J. Am. Ceram. Soc., 102, 4344(2019).
[31] SARKER P, HARRINGTON T, TOHER C et al. High-entropy high-hardness metal carbides discovered by entropy descriptors[J]. Nat. Commun., 9: 4980(2018).
[32] CHICARDI E, GARCÍA-GARRIDO C, HERNÁNDEZ-SAZ J et al. Synthesis of all equiatomic five-transition metals high entropy carbides of the IVB (Ti, Zr, Hf) and VB (V, Nb, Ta) groups by a low temperature route[J]. Ceram. Int., 46, 21421(2020).
[33] CHICARDI E, GARCíA-GARRIDO C, GOTOR F J. Low temperature synthesis of an equiatomic (TiZrHfVNb)C5 high entropy carbide by a mechanically-induced carbon diffusion route[J]. Ceram. Int., 45, 21858(2019).
[34] FENG L, FAHRENHOLTZ W G, HILMAS G E et al. Synthesis of single-phase high-entropy carbide powders[J]. Scr. Mater., 162: 90(2019).
[36] NING S S, WEN T Q, YE B L et al. Low-temperature molten salt synthesis of high-entropy carbide nanopowders[J]. J. Am. Ceram. Soc., 103, 2244(2019).
[37] LI F, LU Y, WANG X G et al. Liquid precursor-derived high- entropy carbide nanopowders[J]. Ceram. Int., 45, 22437(2019).
[38] ZHAO T, LIU W, HAN W J et al. Synthesis of high entropy carbide nano powders
[39] ZHOU J Y, ZHANG J Y, ZHANG F et al. High-entropy carbide: a novel class of multicomponent ceramics[J]. Ceram. Int., 44, 22014(2018).
[40] SEDEGOV A, VOROTILO S, TSYBULIN V et al. Synthesis and study of high-entropy ceramics based on the carbides of refractory metals[J]. IOP Conf. Ser. Mater. Sci. Eng., 558, 012043(2019).
[41] DU B, LIU H H, CHU Y H. Fabrication and characterization of polymer-derived high-entropy carbide ceramic powders[J]. J. Am. Ceram. Soc., 103, 4063(2020).
[42] ŠOLCOVÁ P, NIŽŇANSKÝ M, SCHULZ J et al. Preparation of high-entropy (Ti, Zr, Hf, Ta, Nb) carbide powder
[43] SUN Y N, CHEN F H, QIU W F et al. Synthesis of rare earth containing single-phase multicomponent metal carbides
[44] CSANÁDI T, VOJTKO M, DANKHÁZI Z et al. Small scale fracture and strength of high-entropy carbide grains during microcantilever bending experiments[J]. J. Eur. Ceram. Soc., 40, 4774(2020).
[45] ZHANG H Z, AKHTAR F. Processing and characterization of refractory quaternary and quinary high-entropy carbide composite[J]. Entropy, 21, 474(2019).
[46] DEMIRSKYI D, SUZUKI T S, YOSHIMI K et al. Synthesis and high-temperature properties of medium-entropy (Ti,Ta,Zr,Nb)C using the spark plasma consolidation of carbide powders[J]. Open Ceram., 2: 100015(2020).
[47] WANG F, YAN X L, WANG T Y et al. Irradiation damage in (Zr0.25Ta0.25Nb0.25Ti0.25)C high-entropy carbide ceramics[J]. Acta Mater., 195: 739(2020).
[48] WANG F, ZHANG X, YAN X L et al. The effect of submicron grain size on thermal stability and mechanical properties of high- entropy carbide ceramics[J]. J. Am. Ceram. Soc., 103, 4463(2020).
[49] LIU D Q, ZHANG A J, JIA J G et al. Phase evolution and properties of (VNbTaMoW)C high entropy carbide prepared by reaction synthesis[J]. J. Eur. Ceram. Soc., 40, 2746(2020).
[50] LU K, LIU J X, WEI X F et al. Microstructures and mechanical properties of high-entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C ceramics with the addition of SiC secondary phase[J]. J. Eur. Ceram. Soc., 40, 1839(2020).
[51] DUSZA J, CSANáDI T, MEDVEĎ D et al. Nanoindentation and tribology of a (Hf-Ta-Zr-Nb-Ti)C high-entropy carbide[J]. J. Eur. Ceram. Soc., 41, 5417(2021).
[52] YE B L, WEN T Q, NGUYEN M C et al. First-principles study, fabrication and characterization of (Zr0.25Nb0.25Ti0.25V0.25)C high- entropy ceramics[J]. Acta Mater., 170: 15(2019).
[54] FENG L, CHEN W T, FAHRENHOLTZ W G et al. Strength of single-phase high-entropy carbide ceramics up to 2300 ℃[J]. J. Am. Ceram. Soc., 104, 419(2020).
[55] WANG K, CHEN L, XU C G et al. Microstructure and mechanical properties of (TiZrNbTaMo)C high-entropy ceramic[J]. J. Mater. Sci. Technol., 39: 99(2020).
[56] NI N, DING Q, SHI Y C et al. Ablation behavior of high-entropy carbides ceramics (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C upon exposition to an oxyacetylene torch at 2000 ℃[J]. J. Eur. Ceram. Soc., 43, 2306(2023).
[57] LU W Y, CHEN L, ZHANG W et al. Single-phase formation and mechanical properties of (TiZrNbTaMo)C high-entropy ceramics: first-principles prediction and experimental study[J]. J. Eur. Ceram. Soc., 42, 2021(2022).
[58] PÖTSCHKE J, DAHAL M, HERRMANN M et al. Preparation of high-entropy carbides by different sintering techniques[J]. J. Mater. Sci., 56, 11237(2021).
[59] YU D, YIN J, ZHANG B H et al. Pressureless sintering and properties of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics: the effect of pyrolytic carbon[J]. J. Eur. Ceram. Soc., 41, 3823(2021).
[60] CHEN L, ZHANG W, TAN Y Q et al. Influence of vanadium content on the microstructural evolution and mechanical properties of (TiZrHfVNbTa)C high-entropy carbides processed by pressureless sintering[J]. J. Eur. Ceram. Soc., 41, 60(2021).
[61] BRAIC M, BRAIC V, BALACEANU M et al. Characteristics of (TiAlCrNbY)C films deposited by reactive magnetron sputtering[J]. Surf. Coat. Technol., 204, 2010(2010).
[62] BRAIC V, VLADESCU A, BALACEANU M et al. Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings[J]. Surf. Coat. Technol., 211: 117(2012).
[63] BRAIC V, PARAU A C, PANA I et al. Effects of substrate temperature and carbon content on the structure and properties of (CrCuNbTiY)C multicomponent coatings[J]. Surf. Coat. Technol., 258: 996(2014).
[64] YAN X L, CONSTANTIN L, LU Y F et al. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity[J]. J. Am. Ceram. Soc., 101, 4486(2018).
[65] DUSZA J, ŠVEC P, GIRMAN V et al. Microstructure of (Hf-Ta-Zr-Nb)C high-entropy carbide at micro and nano/atomic level[J]. J. Eur. Ceram. Soc., 38, 4303(2018).
[66] WEI X F, QIN Y, LIU J X et al. Gradient microstructure development and grain growth inhibition in high-entropy carbide ceramics prepared by reactive spark plasma sintering[J]. J. Eur. Ceram. Soc., 40, 935(2020).
[67] WEI X F, LIU J X, LI F et al. High entropy carbide ceramics from different starting materials[J]. J. Eur. Ceram. Soc., 39, 2989(2019).
[68] GILD J, KAUFMANN K, VECCHIO K et al. Reactive flash spark plasma sintering of high-entropy ultrahigh temperature ceramics[J]. Scr. Mater., 170: 106(2019).
[69] ZHANG W, CHEN L, XU C G et al. Densification, microstructure and mechanical properties of multicomponent (TiZrHfNbTaMo)C ceramic prepared by pressureless sintering[J]. J. Mater. Sci. Technol., 72: 23(2021).
[70] YU D, ZHANG B H, YIN J et al. Densifying (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics by two-step pressureless sintering[J]. J. Am. Ceram. Soc., 105, 76(2022).
[71] MALINOVSKIS P, FRITZE S, RIEKEHR L et al. Synthesis and characterization of multicomponent (CrNbTaTiW)C films for increased hardness and corrosion resistance[J]. Mater. Des., 149: 51(2018).
[72] MUKHERJEE A, VLADESCU A, TITORENCU I et al. In vitro biocompatibility of Si alloyed multi-principal element carbide coatings[J]. PLOS ONE, 11, e0161151(2016).
[73] BRAIC V, BALACEANU M, BRAIC M et al. Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications[J]. J. Mech. Behav. Biomed. Mater., 10: 197(2012).
[74] BRAIC M, BALACEANU M, VLADESCU A et al. Deposition and characterization of multi-principal-element (CuSiTiYZr)C coatings[J]. Appl. Surf. Sci., 284: 671(2013).
[75] LIANG S C, TSAI D C, CHANG Z C et al. Structural and mechanical properties of multi-element (TiVCrZrHf)N coatings by reactive magnetron sputtering[J]. Appl. Surf. Sci., 258, 399(2011).
[76] PEI Y T, CHEN C Q, SHAHA K P et al. Microstructural control of TiC/a-C nanocomposite coatings with pulsed magnetron sputtering[J]. Acta Mater., 56, 696(2008).
[77] ROST C M, BORMAN T, HOSSAIN M D et al. Electron and phonon thermal conductivity in high entropy carbides with variable carbon content[J]. Acta Mater., 196: 231(2020).
[78] GORBAN’ V F, ANDREYEV A A, KARTMAZOV G N et al. Production and mechanical properties of high-entropic carbide based on the TiZrHfVNbTa multicomponent alloy[J]. J. Phys. Chem., 39, 166(2017).
[79] KAO W H, SU Y L, HORNG J H et al. Mechanical, tribological, anti-corrosion and anti-glass sticking properties of high-entropy TaNbSiZrCr carbide coatings prepared using radio-frequency magnetron sputtering[J]. Mater. Chem. Phys., 268: 124741(2021).
[80] JHONG Y S, HUANG C W, LIN S J. Effects of CH4 flow ratio on the structure and properties of reactively sputtered (CrNbSiTiZr) Cx coatings[J]. Mater. Chem. Phys., 210: 348(2018).
[81] LIN S Y, CHANG S Y, HUANG Y C et al. Mechanical performance and nanoindenting deformation of (AlCrTaTiZr)NC
[82] XU W J, JIA B S, LIU X H et al. Structural evolution and mechanical properties of multi-element (TiCrZrVNb)C high entropy ceramics films by multi-arc ion plating[J]. Ceram. Int., 48, 19191(2022).
[83] WANG J, ZHANG H, YU X et al. Insight into the structure and tribological and corrosion performance of high entropy (CrNbSiTiZr) C films: first-principles and experimental study[J]. Surf. Coat. Technol., 421: 127468(2021).
[84] LI J C, ZHANG Y L, ZHAO Y X et al. A novel (Hf1/3Zr1/3Ti1/3)C medium-entropy carbide coating with excellent long-life ablation resistance applied above 2100 ℃[J]. Compos. B Eng..
[85] CAI F Y, NI D W, CHEN B W et al. Efficient fabrication and properties of 2D Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC high-entropy ceramic matrix composites
[86] ZHANG L, WANG W Q, ZHOU N P et al. Low temperature fabrication of Cf/BNi/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiCm high entropy ceramic matrix composite by slurry coating and laminating combined with precursor infiltration and pyrolysis[J]. J. Eur. Ceram. Soc., 42, 3099(2022).
[87] GUO W J, HU J, FANG W et al. A novel strategy for rapid fabrication of continuous carbon fiber reinforced (TiZrHfNbTa)C high-entropy ceramic composites: high-entropy alloy
[88] BAO W C, WANG X G, DING H J et al. High-entropy M2AlC-MC (M=Ti, Zr, Hf, Nb, Ta) composite: synthesis and microstructures[J]. Scr. Mater., 183: 33(2020).
[89] CHEN L, LI Y B, CHEN K et al. Synthesis and characterization of medium-/high-entropy M2SnC (M = Ti/V/Nb/Zr/Hf) MAX phases[J]. Small Struct., 4: 2200161(2023).
[90] NEMANI S K, ZHANG B, WYATT B C et al. High-entropy 2D carbide MXenes: TiVNbMoC3 and TiVCrMoC3[J]. ACS Nano, 15, 12815(2021).
[91] CHEN L, LI Y B, LIANG K et al. Two-dimensional MXenes derived from medium/high-entropy MAX phases M2GaC (M = Ti/V/Nb/Ta/Mo) and their electrochemical performance[J]. Small Methods, 7, 2300054(2023).
[92] DU Z G, WU C, CHEN Y C et al. High-entropy atomic layers of transition-metal carbides (MXenes)[J]. Adv. Mater., 33, 2101473(2021).
[93] LIU J B, XIONG J, GUO Z X et al. Preparation of high-entropy (Zr0.25Hf0.25Ta0.25Ti0.25)C-Ni-Co composite by spark plasma sintering[J]. Metall. Mater. Trans. A, 51, 6706(2020).
[94] WANG Y C, YU D, YIN J et al. Ablation behavior of (Hf-Ta-Zr-Nb-Ti)C high-entropy carbide and (Hf-Ta-Zr-Nb-Ti)C-
[95] WANG H X, WANG S Y, CAO Y J et al. Oxidation behaviors of (Hf0.25Zr0.25Ta0.25Nb0.25)C and (Hf0.25Zr0.25Ta0.25Nb0.25)C-SiC at 1300-1500 ℃[J]. J. Mater. Sci. Technol.(2021).
[96] NAUGHTON-DUSZOVÁ A, ŠVEC P, KOVALČÍKOVÁ A et al. On the phase and grain boundaries in dual phase carbide/boride ceramics from micro to atomic level[J]. J. Eur. Ceram. Soc., 43, 6765(2023).
[97] QIN M D, GILD J, HU C Z et al. Dual-phase high-entropy ultra- high temperature ceramics[J]. J. Eur. Ceram. Soc., 40, 5037(2020).
[98] HUO S J, CHEN L, LIU X R et al. Reactive sintering of dual- phase high-entropy ceramics with superior mechanical properties[J]. J. Mater. Sci. Technol., 129: 223(2022).
[99] QIN M D, VEGA H D, ZHANG D W et al. 21-Component compositionally complex ceramics: discovery of ultrahigh-entropy weberite and fergusonite phases and a pyrochlore-weberite transition[J]. J. Adv. Ceram., 11, 641(2022).
[100] WANG Y C, WANG X C, LI S et al. Improved oxidation resistance of (Zr-Nb-Hf-Ta)(C, N) high entropy carbonitrides[J]. Corros. Sci., 225: 111583(2023).
[101] DIPPO O F, MESGARZADEH N, HARRINGTON T J et al. Bulk high-entropy nitrides and carbonitrides[J]. Sci. Rep., 10: 21288(2020).
[102] BALASUBRAMANIAN K, KHARE S V, GALL D. Valence electron concentration as an indicator for mechanical properties in rocksalt structure nitrides, carbides and carbonitrides[J]. Acta Mater., 152: 175(2018).
[103] MOSKOVSKIKH D O, VOROTILO S, SEDEGOV A S et al. High-entropy (HfTaTiNbZr)C and (HfTaTiNbMo)C carbides fabricated through reactive high-energy ball milling and spark plasma sintering[J]. Ceram. Int., 46, 19008(2020).
[105] LIU D Q, ZHANG A J, JIA J G et al. Reaction synthesis and characterization of a new class high entropy carbide (NbTaMoW)C[J]. Mater. Sci. Eng. A Struct. Mater., 804: 140520(2021).
[106] YU H, BAHADORI M, THOMPSON G B et al. Understanding dislocation slip in stoichiometric rocksalt transition metal carbides and nitrides[J]. J. Mater. Sci., 52, 6235(2017).
[107] KIANI S, YANG J M, KODAMBAKA S et al. Nanomechanics of refractory transition-metal carbides: a path to discovering plasticity in hard ceramics[J]. J. Am. Ceram. Soc., 98, 2313(2015).
[108] CSANáDI T, CASTLE E, REECE M J et al. Strength enhancement and slip behaviour of high-entropy carbide grains during micro-compression[J]. Sci. Rep., 9: 10200(2019).
[109] HAN X X, GIRMAN V, SEDLAK R et al. Improved creep resistance of high entropy transition metal carbides[J]. J. Eur. Ceram. Soc., 40, 2709(2020).
[110] CHENG Z L, LU W Y, CHEN L et al. Compressive creep properties and mechanisms of (Ti-Zr-Nb-Ta-Mo)C high entropy ceramics at high temperatures[J]. J. Eur. Ceram. Soc., 42, 5280(2022).
[111] KÖRMANN F, IKEDA Y, GRABOWSKI B et al. Phonon broadening in high entropy alloys[J]. npj Comput. Mater., 3: 36(2017).
[112] ZHANG Y W, STOCKS G M, JIN K et al. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys[J]. Nat. Commun., 6: 8736(2015).
[113] CHEN H, XIANG H M, DAI F Z et al. High porosity and low thermal conductivity high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C[J]. J. Mater. Sci. Technol., 35, 1700(2019).
[114] GASPARRINI C, RANA D S, LE BRUN N et al. On the stoichiometry of zirconium carbide[J]. Sci. Rep., 10: 6347(2020).
[115] WEI X F, LIU J X, BAO W C et al. High-entropy carbide ceramics with refined microstructure and enhanced thermal conductivity by the addition of graphite[J]. J. Eur. Ceram. Soc., 41, 4747(2021).
[116] GILD J, SAMIEE M, BRAUN J L et al. High-entropy fluorite oxides[J]. J. Eur. Ceram. Soc., 38, 3578(2018).
[117] BACKMAN L, OPILA E J. Thermodynamic assessment of the group IV, V and VI oxides for the design of oxidation resistant multi-principal component materials[J]. J. Eur. Ceram. Soc., 39, 1796(2019).
[118] BACKMAN L, GILD J, LUO J et al. Part I: theoretical predictions of preferential oxidation in refractory high entropy materials[J]. Acta Mater., 197: 20(2020).
[119] BACKMAN L, GILD J, LUO J et al. Part II: experimental verification of computationally predicted preferential oxidation of refractory high entropy ultra-high temperature ceramics[J]. Acta Mater., 197: 81(2020).
[120] YE B L, WEN T Q, LIU D et al. Oxidation behavior of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics at 1073-1473 K in air[J]. Corros. Sci.(2019).
[121] YE B L, WEN T Q, CHU Y H. High-temperature oxidation behavior of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics in air.[J]. J. Am. Ceram. Soc., 103, 500(2019).
[122] WANG Y C, ZHANG R Z, ZHANG B H et al. The role of multi- elements and interlayer on the oxidation behaviour of (Hf-Ta- Zr-Nb)C high entropy ceramics[J]. Corros. Sci., 176: 109019(2020).
[123] WANG H X, HAN X, LIU W et al. Oxidation behavior of high-entropy carbide (Hf0.2Ta0.2Zr0.2Ti0.2Nb0.2)C at 1400-1600 °C[J]. Ceram. Int., 47, 10848(2021).
[124] WANG H X, CAO Y J, LIU W et al. Oxidation behavior of (Hf0.2Ta0.2Zr0.2Ti0.2Nb0.2)C-
[125] TAN Y Q, CHEN C, LI S G et al. Oxidation behaviours of high-entropy transition metal carbides in 1200 ℃ water vapor[J]. J. Alloys Compd., 816: 152523(2020).
[126] WANG Y C, REECE M J. Oxidation resistance of (Hf-Ta-Zr-Nb)C high entropy carbide powders compared with the component monocarbides and binary carbide powders[J]. Scr. Mater., 193: 86(2021).
[127] MELLOR W M, KAUFMANN K, DIPPO O F et al. Development of ultrahigh-entropy ceramics with tailored oxidation behavior[J]. J. Eur. Ceram. Soc., 41, 5791(2021).
[128] WANG Y C, CSANADI T, ZHANG H F et al. Synthesis, microstructure, and mechanical properties of novel high entropy carbonitrides[J]. Acta Mater., 231: 117887(2022).
[129] PENG Z, SUN W, XIONG X et al. Novel refractory high-entropy ceramics: transition metal carbonitrides with superior ablation resistance[J]. Corros. Sci., 184: 109359(2021).
[130] WANG Y C, ZHANG B H, ZHANG C Y et al. Ablation behaviour of (Hf-Ta-Zr-Nb)C high entropy carbide ceramic at temperatures above 2100 °C[J]. J. Mater. Sci. Technol..
[131] GUO W J, HU J, YE Y C et al. Ablation behavior of (TiZrHfNbTa)C high-entropy ceramics with the addition of SiC secondary under an oxyacetylene flame[J]. Ceram. Int., 48, 12790(2022).
[132] YE Z M, ZENG Y, XIONG X et al. Elucidating the role of preferential oxidation during ablation: insights on the design and optimization of multicomponent ultra-high temperature ceramics[J]. J. Adv. Ceram., 11, 1956(2022).
[133] CHEN Z Z, WANG H X, LI C R et al. Oxyacetylene ablation of (Hf0.2Ti0.2Zr0.2Ta0.2Nb0.2)C at 1350-2050 ℃[J]. J. Eur. Ceram. Soc., 43, 2700(2023).
[134] MCCORMACK S J, TSENG K P, WEBER R J K et al. In-situ determination of the HfO2-Ta2O5-temperature phase diagram up to 3000 ℃[J]. J. Am. Ceram. Soc., 102, 4848(2019).
[135] WANG F, NORTHWOOD D O. Oxides formed between ZrO2 and Nb2O5[J]. J. Mater. Sci., 30: 4003(1995).
[136] CAI F Y, NI D W, BAO W C et al. Ablation behavior and mechanisms of Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC high-entropy ceramic matrix composites[J]. Compos. B Eng., 243: 110177(2022).
[137] COUTURES J P, COUTURES J. The system HfO2-TiO2[J]. J. Am. Ceram. Soc., 70, 383(1987).
[138] MCHALE A E, ROTH R S. Investigation of the phase transition in ZrTiO4 and ZrTiO4-SnO2 solid solutions[J]. J. Am. Ceram. Soc., 66, C-18(1983).
[139] KREBS M A, CONDRATE S R A. Vibrational spectra of HfO2-ZrO2 solid solutions[J]. J. Am. Ceram. Soc., 65, c144(1982).
[141] SCHADOW H, OPPERMANN H, WEHNER B. Investigations on the quasi-binary system V2O5-Ta2O5[J]. Cryst. Res. Technol., 27, 691(2006).
[142] JONGEJAN A, WILKINS A. A re-examination of the system Nb2O5-TiO2 at liquidus temperatures[J]. J. Less-Common Met., 19, 185(1969).
[143] ROTH R S, COUGHANOUR L W. Phase equilibrium relations in the systems titania-niobia[J]. J. Res. Natl. Bur. Stand, 55, 209(1955).
[144] WARING J L, ROTH R S. Effect of oxide additions on the polymorphism of tantalum pentoxide (system Ta2O5-TiO2)[J]. J. Res. Natl. Bur. Stand A Phys. Chem., 72, 175(1968).
[145] ROTH R, WARING J. Effect of oxide additions on the polymorphism of tantalum pentoxide III. Stabilization of the low temperature structure type[J]. J. Res. Natl. Bur. Stand A Phys. Chem., 74, 485(1970).
[146] HOLTZBERG F, REISMAN A. Sub-solidus equilibria in the system Nb2O5-Ta2O5[J]. J. Phys. Chem., 65, 1192(1961).
[147] CHANG L L Y, SCROGER M G, PHILLIPS B. Condensed phase relations in the systems ZrO2-WO2-WO3 and HfO2-WO2-WO3[J]. J. Am. Ceram. Soc., 50, 211(1967).
[148] WANG F, YAN X L, SHAO L et al. Irradiation damage behavior in novel high-entropy carbide ceramics[J]. Trans. Am. Nucl. Soc., 120: 327(2019).
[149] XIN X T, BAO W C, WANG X G et al. Reduced He ion irradiation damage in ZrC-based high-entropy ceramics[J]. J. Adv. Ceram., 12, 916(2023).
[150] ZHOU Y C, ZHAO B, CHEN H et al. Electromagnetic wave absorbing properties of TMCs (TM = Ti, Zr, Hf, Nb and Ta) and high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C[J]. J. Mater. Sci. Technol., 74: 105(2021).
[151] ZHANG W M, XIANG H M, DAI F Z et al. Achieving ultra- broadband electromagnetic wave absorption in high-entropy transition metal carbides (HE TMCs)[J]. J. Adv. Ceram., 11, 545(2022).
[152] HU Y, NI D W, CHEN B W et al. Cf/(CrZrHfNbTa)C-SiC high- entropy ceramic matrix composites for potential multi-functional applications[J]. J. Mater. Sci. Technol., 182: 132(2024).
Get Citation
Copy Citation Text
Feiyan CAI, Dewei NI, Shaoming DONG.
Category:
Received: Dec. 6, 2023
Accepted: --
Published Online: Jul. 31, 2024
The Author Email: Dewei NI (deweini@mail.sic.ac.cn), Shaoming DONG (smdong@mail.sic.ac.cn)