Photonics Research, Volume. 13, Issue 10, 2766(2025)

Scalable data-efficient real-time 4D imaging FMCW LiDAR with dual Mach–Zehnder interferometers

Yi Hao1, Qingyang Zhu1, Yaqi Han1, Zihan Zang1, Annan Xia1, Connie Chang-Hasnain1,2, and H. Y. Fu1、*
Author Affiliations
  • 1Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
  • 2Berxel Photonics Co., Ltd., Shenzhen 518071, China
  • show less
    Figures & Tables(9)
    Coherent detection principle of the FMCW LiDAR.
    (a) Principle of the beat frequency down-shifting and the laser frequency sweep of the tunable laser (blue line), path 1 of the MZI (red line), path 2 of the MZI (purple line), path 3 after CIR (yellow lines), path 4 (green lines), and BPD (yellow and green lines). FC, fiber coupler; MZI, Mach–Zehnder interferometer; CIR, circulator; BPD, balanced photodetector. (b) Simulated beat spectra for a stationary target detected by the BPD. Red dashed line: a Butterworth low-pass filter (LPF) with a 300-kHz cutoff frequency. Green line: beat spectrum after applying the LPF. Gray line: beat spectrum without the LPF.
    (a) Schematic diagram of the dual-MZI-based FMCW LiDAR system. (b) Measured relationship between the output wavelength and the modulation voltage of the MEMS-VCSEL. (c) Interpolated modulation voltage and the corresponding corrected laser frequency sweep. (d) Scanning pattern of the 2D beam scanning structure. AFG, arbitrary function generator; EDFA, erbium-doped fiber amplifier; VOA, variable optical attenuator; OSC, oscilloscope. The red line and black line represent the fibers and cables, respectively.
    Schematic illustration of the optical frequency sweeps (a) distorted by laser phase noise and (b) approximated as linear within coherence time.
    High-resolution 3D imaging performance. (a) Schematic diagram of the targets consisting of two cubes, one cylinder, and a flat panel as the background covered with highly reflective sheets. (b) Measured beat signal from BPD 1 and (c) reference beat signal from BPD 2 of one up ramp with the corresponding beat spectra (d) and (e) of two adjacent spectral windows using overlapped short-time Fourier transform (STFT). (f) High-resolution 3D imaging results with 39×1999 pixels along the y- and x-axes. Depth deviation for (g) the background, (h) plane of the large cube, (i) slopes and edge of the small cube, and (j) surface of the cylinder. (k) Depth profile along the red dash line in (a).
    Ultra-fast real-time 3D imaging performance. Photo of (a) three carved letters “T”, “H”, “U” and (c) a rotating fan, all covered by highly reflective sheets and fixed on a rotator. (b) and (d) are the imaging results of (a) and (c) with 39×99 pixels along the y- and x-axes and 10 frames at 200-kHz fast-axis scanning rate and 2-kHz frame rate.
    4D imaging performance. (a) Schematic diagram of the targets consisting of a rotator and a flat panel as the background covered with highly reflective sheets. (b) Beat spectra with different α altered by the galvo mirror, where red and blue curves represent the up and down ramps, respectively. (c) 4D imaging results with 2×999 pixels along the y- and x-axes. (d) Velocity distribution of the upper pixels along the x-axis in (c) with the (e) velocity error and deviation of the middle 100 pixels
    • Table 1. Comparative Summary of Beat Frequency Down-Shifting Methods in FMCW LiDAR Systems

      View table
      View in Article

      Table 1. Comparative Summary of Beat Frequency Down-Shifting Methods in FMCW LiDAR Systems

      Ref.[21,22][23][24]bThis Workc
      MethodAOMAODElectrical frequency mixerFiber-based MZI
      ModelSGTF40-1550-1P, China Electronics Technology GroupDTSX-400, Photon LinesaSMF-28
      Frequency shift40 MHz104 MHz10 MHz1.15 GHz
      Physical sizeMedium57.10  mm×27.60  mm×22.30  mm18.80  mm×22.86  mm×13.72  mm242  μm×242  μm×1.60  m
      CostHighHighUSD $59.33USD $2.92 per meter
    • Table 2. Comparison of the Recent FMCW LiDAR Systemsa

      View table
      View in Article

      Table 2. Comparison of the Recent FMCW LiDAR Systemsa

      Ref.[8][22][23][24][27][36][37]This Work
      LaserDFB (1538.46 nm est.)DFB (1550 nm)Flutter-wavelength-swept laser (1535 nm)EO-ECDL (1550 nm)Stepped-frequency-swept laser (1550 nm)Akinetic all-semiconductor programmable swept laser (1316 nm)Bench-top tunable laser (1550 nm)HCG MEMS-VCSEL (1550 nm)
      Sweep rate1 kHz10 kHz100 kHz5 kHz26.50 kHz15.94 kHz25 kHz100 kHz
      Tuning rate26 MHz/μs350.52 MHz/μs142 MHz/μs7.10 MHz/μs33.13 MHz/μs181.70 GHz/μs500 MHz/μs146.88 GHz/μs
      Scanning structureGalvo mirrorGalvo mirrorAcousto-optic deflector and transmission gratingGalvo mirrorGalvo mirrorGalvo mirror and transmission gratingBulk photonic crystal waveguide and mirrorTransmission grating and galvo mirror
      Depth pixels per frame40×4051×78600×190 (2.60 Hz)475×1000 (16 Hz)39×1999 (100 Hz)
      Axial resolution1.15 cm9.50 mm21 cm10.56 cm11.99 cm2.82 mm15 mm5.10 mm
      Whether real-time imaging the dynamic sceneNoNoYesNoNoYesNoYes
      Fast-axis scanning rate2 kHz15.94 kHz200 kHz
      Frame rate10 Hz (200×45 pixels per frame)33.20 Hz (475×400 pixels per frame)2 kHz (39×99 pixels per frame)
      Velocity resolution1.54 mm/s15.50 mm/s0.15 m/s19 mm/s0.16 m/s
      Maximum velocity error2 mm/s0.09 m/s0.08 m/s29 mm/s0.50 m/s
      Maximum velocity standard deviation37 mm/s0.20 m/s0.18 m/s
    Tools

    Get Citation

    Copy Citation Text

    Yi Hao, Qingyang Zhu, Yaqi Han, Zihan Zang, Annan Xia, Connie Chang-Hasnain, H. Y. Fu, "Scalable data-efficient real-time 4D imaging FMCW LiDAR with dual Mach–Zehnder interferometers," Photonics Res. 13, 2766 (2025)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems, Microscopy, and Displays

    Received: Mar. 4, 2025

    Accepted: Jul. 14, 2025

    Published Online: Sep. 4, 2025

    The Author Email: H. Y. Fu (hyfu@sz.tsinghua.edu.cn)

    DOI:10.1364/PRJ.560809

    CSTR:32188.14.PRJ.560809

    Topics