Journal of Synthetic Crystals, Volume. 50, Issue 3, 504(2021)

Theoretical Study on the Photogalvanic Effect of Monolayer 2H-MoTe2

LUO Bing1, CHEN Yan2, and XU Zhonghui1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(16)

    [1] [1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

    [3] [3] ZHOU L, XU K, ZUBAIR A, et al. Large-area synthesis of high-quality uniform few-layer MoTe2[J]. Journal of the American Chemical Society, 2015, 137(37): 11892-11895.

    [4] [4] NAN H Y, JIANG J, XIAO S Q, et al. Soft hydrogen plasma induced phase transition in monolayer and few-layer MoTe2[J]. Nanotechnology, 2019, 30(3): 034004.

    [5] [5] DAI X Y, YANG Z X, LI A L, et al. Character of defect states in vacancy-doped MoTe2 monolayer: spatial localization, flat bands and hybridization gap[J]. Superlattices and Microstructures, 2019, 130: 528-538.

    [6] [6] KIN F M, TONY F H, JIE S, et al. Atomically thin MoS2: a new direct-gap semiconductor[J]. Physical Review Letters, 2010, 105(13): 136805.1-136805.4.

    [7] [7] ZHANG Y, CHANG T R, ZHOU B, et al. Directobservation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2[J]. Nature Nanotechnology, 2014, 9(2): 111-115.

    [8] [8] ZHANG W X, HUANG Z S, ZHANG W L, et al. Two-dimensional semiconductors with possible high room temperature mobility[J]. Nano Research, 2014, 7(12): 1731-1737.

    [9] [9] KIM D, LEE R, KIM S, et al. Two-dimensional phase-engineered 1T′- and 2H-MoTe2-based near-infrared photodetectors with ultra-fast response[J]. Journal of Alloys and Compounds, 2019, 789: 960-965.

    [10] [10] RUPPERT C, ASLAN O B, HEINZ T F. Optical properties and band gap of single- and few-layer MoTe2 crystals[J]. Nano Letters, 2014, 14(11): 6231-6236.

    [11] [11] ZHOU L, ZUBAIR A, WANG Z Q, et al. Synthesis of high-quality large-area homogenous 1T' MoTe2 from chemical vapor deposition[J]. Advanced Materials, 2016, 28(43): 9526-9531.

    [12] [12] MUELLER T, XIA F N, AVOURIS P. Graphene photodetectors for high-speed optical communications[J]. Nature Photonics, 2010, 4(5): 297-301.

    [13] [13] KOPPENS F H L, MUELLER T, AVOURIS P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems[J]. Nature Nanotechnology, 2014, 9(10): 780-793.

    [14] [14] XIE Y Q, ZHANG L, ZHU Y, et al. Photogalvaniceffect in monolayer black phosphorus[J]. Nanotechnology, 2015, 26(45): 455202.

    [15] [15] CHU F H, CHEN M Y, WANG Y, et al. A highly polarization sensitive antimonene photodetector with a broadband photoresponse and strong anisotropy[J]. Journal of Materials Chemistry C, 2018, 6(10): 2509-2514.

    [16] [16] IVCHENKO E L, PIKUS G E. Photogalvanic effects in noncentrosymmetric crystals[M]∥Semiconductor Physics. Boston, MA: Springer US, 1986: 427-447.

    [17] [17] BELINICHER V I, STURMAN B I. The photogalvanic effect in media lacking a center of symmetry[J]. Soviet Physics Uspekhi, 1980, 23(3): 199-223.

    Tools

    Get Citation

    Copy Citation Text

    LUO Bing, CHEN Yan, XU Zhonghui. Theoretical Study on the Photogalvanic Effect of Monolayer 2H-MoTe2[J]. Journal of Synthetic Crystals, 2021, 50(3): 504

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 5, 2020

    Accepted: --

    Published Online: Apr. 15, 2021

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics