Chinese Journal of Lasers, Volume. 50, Issue 11, 1101004(2023)
Intelligent Manipulation of Multi-Dimensional Laser Technologies and Applications
[1] Allen L, Beijersbergen M W, Spreeuw R J et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 45, 8185-8189(1992).
[2] Siviloglou G A, Broky J, Dogariu A et al. Observation of accelerating airy beams[J]. Physical Review Letters, 99, 213901(2007).
[3] Zhao J Y, Zhang P, Deng D M et al. Observation of self-accelerating Bessel-like optical beams along arbitrary trajectories[J]. Optics Letters, 38, 498-500(2013).
[4] Gu B, Xu D F, Rui G H et al. Manipulation of dielectric Rayleigh particles using highly focused elliptically polarized vector fields[J]. Applied Optics, 54, 8123-8129(2015).
[5] Hofmann M, Eggeling C, Jakobs S et al. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 102, 17565-17569(2005).
[6] Allegre O J, Perrie W, Edwardson S P et al. Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses[J]. Journal of Optics, 14, 085601(2012).
[7] Wang J, Yang J Y, Fazal I M et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 6, 488-496(2012).
[8] Bliokh K Y, Rodríguez-Fortuño F J, Nori F et al. Spin-orbit interactions of light[J]. Nature Photonics, 9, 796-808(2015).
[9] Conrads H, Schmidt M. Plasma generation and plasma sources[J]. Plasma Sources Science and Technology, 9, 441-454(2000).
[10] Blow K J, Wood D. Theoretical description of transient stimulated Raman scattering in optical fibers[J]. IEEE Journal of Quantum Electronics, 25, 2665-2673(1989).
[11] Agrawal G P. Nonlinear fiber optics[M]. Christiansen P L, Sørensen M P, Scott A C. Nonlinear science at the dawn of the 21st Century. Lecture notes in physics, 542, 195-211(2007).
[12] Du L P, Yang A P, Zayats A V et al. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum[J]. Nature Physics, 15, 650-654(2019).
[13] Gateau J, Rigneault H, Guillon M. Complementary speckle patterns: deterministic interchange of intrinsic vortices and maxima through scattering media[J]. Physical Review Letters, 118, 043903(2017).
[14] Wan Z S, Shen Y J, Wang Z Y et al. Divergence-degenerate spatial multiplexing towards future ultrahigh capacity, low error-rate optical communications[J]. Light: Science & Applications, 11, 144(2022).
[15] Wright L G, Wu F O, Christodoulides D N et al. Physics of highly multimode nonlinear optical systems[J]. Nature Physics, 18, 1018-1030(2022).
[16] Mahlab U, Shamir J, Caulfield H J. Genetic algorithm for optical pattern recognition[J]. Optics Letters, 16, 648-650(1991).
[17] Kihm K D, Lyons D P. Optical tomography using a genetic algorithm[J]. Optics Letters, 21, 1327-1329(1996).
[18] Eisenhammer T, Lazarov M, Leutbecher M et al. Optimization of interference filters with genetic algorithms applied to silver-based heat mirrors[J]. Applied Optics, 32, 6310-6315(1993).
[19] Zibar D, Wymeersch H, Lyubomirsky I. Machine learning under the spotlight[J]. Nature Photonics, 11, 749-751(2017).
[20] Comin A, Hartschuh A. Efficient optimization of SHG hotspot switching in plasmonic nanoantennas using phase-shaped laser pulses controlled by neural networks[J]. Optics Express, 26, 33678-33686(2018).
[21] Xia M[M]. Laser principle and technology(2016).
[22] He C, Shen Y J, Forbes A. Towards higher-dimensional structured light[J]. Light: Science & Applications, 11, 205(2022).
[23] McCarthy J, Minsky M, Rochester N et al. A proposal for the Dartmouth summer research project on artificial intelligence, August 31, 1955[J]. AI Magazine, 27, 12-14(2006).
[24] Zhou Z H[M]. Machine learning(2016).
[25] Kiran B R, Sobh I, Talpaert V et al. Deep reinforcement learning for autonomous driving: a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 23, 4909-4926(2022).
[26] Cambria E, White B. Jumping NLP curves: a review of natural language processing research[review article[J]. IEEE Computational Intelligence Magazine, 9, 48-57(2014).
[27] Wang S Z, Cao J N, Yu P S. Deep learning for spatio-temporal data mining: a survey[J]. IEEE Transactions on Knowledge and Data Engineering, 34, 3681-3700(2022).
[28] Khan R A, Crenn A, Meyer A et al. A novel database of children’s spontaneous facial expressions (LIRIS-CSE)[J]. Image and Vision Computing, 83/84, 61-69(2019).
[29] Wu T L, Tegmark M. Toward an artificial intelligence physicist for unsupervised learning[J]. Physical Review. E, 100, 033311(2019).
[30] Møller M F. A scaled conjugate gradient algorithm for fast supervised learning[J]. Neural Networks, 6, 525-533(1993).
[31] Xiong W, Redding B, Gertler S et al. Deep learning of ultrafast pulses with a multimode fiber[J]. APL Photonics, 5, 096106(2020).
[32] Barlow H B. Unsupervised learning[J]. Neural Computation, 1, 295-311(1989).
[33] Närhi M, Salmela L, Toivonen J et al. Machine learning analysis of extreme events in optical fibre modulation instability[J]. Nature Communications, 9, 4923(2018).
[34] Zhou X Y, Belkin M. Semi-supervised learning[M]. Academic Press library in signal processing, 1239-1269(2014).
[35] Fan P F, Ruddlesden M, Wang Y F et al. Semi-supervised learning enabled scalable high-spatial-density channel multiplexing over multimode fibers[C](2022).
[36] Sutton R S, Barto A G[M]. Reinforcement learning: an introduction(2018).
[37] Valensise C M, Giuseppi A, Cerullo G et al. Deep reinforcement learning control of white-light continuum generation[J]. Optica, 8, 239-242(2021).
[38] McCulloch W S, Pitts W. A logical calculus of the ideas immanent in nervous activity[J]. Bulletin of Mathematical Biology, 52, 99-115(1990).
[39] De Jong K. Learning with genetic algorithms: an overview[J]. Machine Learning, 3, 121-138(1988).
[40] Kennedy J, Eberhart R. Particle swarm optimization[C], 1942-1948(2002).
[41] Hearst M A, Dumais S T, Osuna E et al. Support vector machines[J]. IEEE Intelligent Systems and Their Applications, 13, 18-28(1998).
[42] Hofmann T, Schölkopf B, Smola A J. Kernel methods in machine learning[J]. The Annals of Statistics, 36, 1171-1220(2008).
[43] Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 70, 489-501(2006).
[44] Rosenblatt F. The perceptron: a probabilistic model for information storage and organization in the brain[J]. Psychological Review, 65, 386-408(1958).
[45] Hopfield J J. Neural networks and physical systems with emergent collective computational abilities[J]. Proceedings of the National Academy of Sciences of the United States of America, 79, 2554-2558(1982).
[46] Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 323, 533-536(1986).
[47] Torczon V. On the convergence of pattern search algorithms[J]. SIAM Journal on Optimization, 7, 1-25(1997).
[48] Woodward R I, Kelleher E J R. Towards ‘smart lasers’: self-optimisation of an ultrafast pulse source using a genetic algorithm[J]. Scientific Reports, 6, 37616(2016).
[49] Shen X L, Li W X, Yan M et al. Electronic control of nonlinear-polarization-rotation mode locking in Yb-doped fiber lasers[J]. Optics Letters, 37, 3426-3428(2012).
[50] Hellwig T, Walbaum T, Groß P et al. Automated characterization and alignment of passively mode-locked fiber lasers based on nonlinear polarization rotation[J]. Applied Physics B, 101, 565-570(2010).
[51] Andral U, Fodil R S, Amrani F et al. Fiber laser mode locked through an evolutionary algorithm[J]. Optica, 2, 275-278(2015).
[52] Pu G Q, Yi L L, Zhang L et al. Intelligent programmable mode-locked fiber laser with a human-like algorithm[J]. Optica, 6, 362-369(2019).
[53] Yan Q Q, Deng Q H, Zhang J et al. Low-latency deep-reinforcement learning algorithm for ultrafast fiber lasers[J]. Photonics Research, 9, 1493-1501(2021).
[54] Woodward R I, Kelleher E J R. Genetic algorithm-based control of birefringent filtering for self-tuning, self-pulsing fiber lasers[J]. Optics Letters, 42, 2952-2955(2017).
[55] Tzang O, Caravaca-Aguirre A M, Wagner K et al. Adaptive wavefront shaping for controlling nonlinear multimode interactions in optical fibres[J]. Nature Photonics, 12, 368-374(2018).
[56] Wu X Q, Peng J S, Boscolo S et al. Intelligent breathing soliton generation in ultrafast fiber lasers[J]. Laser & Photonics Reviews, 16, 2100191(2022).
[57] Pu G Q, Yi L L, Zhang L et al. Intelligent control of mode-locked femtosecond pulses by time-stretch-assisted real-time spectral analysis[J]. Light: Science & Applications, 9, 13(2020).
[58] Girardot J, Billard F, Coillet A et al. Autosetting mode-locked laser using an evolutionary algorithm and time-stretch spectral characterization[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 1100108(2020).
[59] Zhang K P, Zhang X Q, Feng T et al. Analysis of temporal and spatial output characteristics of 4F degenerate cavity based on thermal effect[J]. Chinese Journal of Lasers, 49, 2401002(2022).
[60] Tradonsky C, Chriki R, Barach G et al. Digital degenerate cavity laser[C], FTu4C.4(2017).
[61] Tradonsky C, Gershenzon I, Pal V et al. Rapid laser solver for the phase retrieval problem[J]. Science Advances, 5, eaax4530(2019).
[62] Forbes A. Structured light from lasers[J]. Laser & Photonics Reviews, 13, 1900140(2019).
[63] Burger L, Litvin I, Ngcobo S et al. Implementation of a spatial light modulator for intracavity beam shaping[J]. Journal of Optics, 17, 015604(2015).
[64] Wright L G, Christodoulides D N, Wise F W. Spatiotemporal mode-locking in multimode fiber lasers[J]. Science, 358, 94-97(2017).
[65] Wright L G, Ziegler Z M, Lushnikov P M et al. Multimode nonlinear fiber optics: massively parallel numerical solver, tutorial, and outlook[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 5100516(2018).
[66] Wright L G, Sidorenko P, Pourbeyram H et al. Mechanisms of spatiotemporal mode-locking[J]. Nature Physics, 16, 565-570(2020).
[67] Qiu M W. Space-time mode-locked fiber laser based on multimode nonlinearity[D](2022).
[68] Qin H Q, Xiao X S, Wang P et al. Observation of soliton molecules in a spatiotemporal mode-locked multimode fiber laser[J]. Optics Letters, 43, 1982-1985(2018).
[69] Wei X M, Jing J C, Shen Y C et al. Harnessing a multi-dimensional fibre laser using genetic wavefront shaping[J]. Light: Science & Applications, 9, 149(2020).
[70] Ma Z L, Long J G, Lin W et al. Tunable spatiotemporal mode-locked fiber laser at 1.55 μm[J]. Optics Express, 29, 9465-9473(2021).
[71] Guo Z Y, Gong C F, Liu H J et al. Research advances of orbital angular momentum based optical communication technology[J]. Opto-Electronic Engineering, 47, 95-128(2020).
[72] Ostrovsky A S, Rickenstorff-Parrao C, Arrizón V. Generation of the “perfect” optical vortex using a liquid-crystal spatial light modulator[J]. Optics Letters, 38, 534(2013).
[73] Beijersbergen M W, Allen L, van der Veen H E L O et al. Astigmatic laser mode converters and transfer of orbital angular momentum[J]. Optics Communications, 96, 123-132(1993).
[74] Sukhov S, Dogariu A. Non-conservative optical forces[J]. Reports on Progress in Physics, 80, 112001(2017).
[75] Čižmár T, Mazilu M, Dholakia K. In situ wavefront correction and its application to micromanipulation[J]. Nature Photonics, 4, 388-394(2010).
[76] Li P, Liu S, Xie G F et al. Modulation mechanism of multi-azimuthal masks on the redistributions of focused azimuthally polarized beams[J]. Optics Express, 23, 7131-7139(2015).
[77] Zhang Y Q, Shen J F, Min C J et al. Nonlinearity-induced multiplexed optical trapping and manipulation with femtosecond vector beams[J]. Nano Letters, 18, 5538-5543(2018).
[78] Liu B H, Weiner A M. Space-time focusing in a highly multimode fiber via optical pulse shaping[J]. Optics Letters, 43, 4675-4678(2018).
[79] Boscolo S, Finot C. Artificial neural networks for nonlinear pulse shaping in optical fibers[J]. Optics & Laser Technology, 131, 106439(2020).
[80] Jing J C, Wei X M, Wang L V. Spatio-temporal-spectral imaging of non-repeatable dissipative soliton dynamics[J]. Nature Communications, 11, 2059(2020).
[81] Teğin U, Rahmani B, Kakkava E et al. Controlling spatiotemporal nonlinearities in multimode fibers with deep neural networks[J]. APL Photonics, 5, 030804(2020).
[82] Fu S Y, Zhai Y W, Yin C et al. Mixed orbital angular momentum amplitude shift keying through a single hologram[J]. OSA Continuum, 1, 295-308(2018).
[83] Li X K, Li Y, Zeng X N et al. Perfect optical vortex array for optical communication based on orbital angular momentum shift keying[J]. Journal of Optics, 20, 125604(2018).
[84] Zhao Q S, Hao S Q, Wang Y et al. Mode detection of misaligned orbital angular momentum beams based on convolutional neural network[J]. Applied Optics, 57, 10152-10158(2018).
[85] Vellekoop I M, Mosk A P. Focusing coherent light through opaque strongly scattering media[J]. Optics Letters, 32, 2309-2311(2007).
[86] Katz O, Heidmann P, Fink M et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations[J]. Nature Photonics, 8, 784-790(2014).
[87] Liu Z J. Convolutional neural networks for multimode fiber study: a review[C], 174-178(2020).
[88] Borhani N, Kakkava E, Moser C et al. Learning to see through multimode fibers[J]. Optica, 5, 960-966(2018).
[89] Tang P S, Zheng K P, Yuan W M et al. Learning to transmit images through optical speckle of a multimode fiber with high fidelity[J]. Applied Physics Letters, 121, 081107(2022).
[90] Fan W R, Chen T R, Xu X Q et al. Single-shot recognition of 3D phase images with deep learning[J]. Laser & Photonics Reviews, 16, 2100719(2022).
[91] Ashkin A, Dziedzic J M, Bjorkholm J E et al. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Optics Letters, 11, 288-290(1986).
[92] Lipfert J, van Oene M M, Lee M N et al. Torque spectroscopy for the study of rotary motion in biological systems[J]. Chemical Reviews, 115, 1449-1474(2015).
[93] Johansen P L, Fenaroli F, Evensen L et al. Optical micromanipulation of nanoparticles and cells inside living zebrafish[J]. Nature Communications, 7, 10974(2016).
[94] Geraci A A, Papp S B, Kitching J. Short-range force detection using optically cooled levitated microspheres[J]. Physical Review Letters, 105, 101101(2010).
[95] Delić U, Reisenbauer M, Dare K H et al. Cooling of a levitated nanoparticle to the motional quantum ground state[J]. Science, 367, 892-895(2020).
[96] Hoang T M, Pan R, Ahn J et al. Experimental test of the differential fluctuation theorem and a generalized Jarzynski equality for arbitrary initial states[J]. Physical Review Letters, 120, 080602(2018).
[97] Roichman Y, Sun B, Roichman Y et al. Optical forces arising from phase gradients[J]. Physical Review Letters, 100, 013602(2008).
[98] Shanblatt E R, Grier D G. Extended and knotted optical traps in three dimensions[J]. Optics Express, 19, 5833-5838(2011).
[99] Shvedov V, Davoyan A R, Hnatovsky C et al. A long-range polarization-controlled optical tractor beam[J]. Nature Photonics, 8, 846-850(2014).
[100] Wei W J, Zhu L H, Tai Y P et al. Cycloid-structured optical tweezers[J]. Optics Letters, 48, 972-975(2023).
[101] Zhan Q W. Trapping metallic Rayleigh particles with radial polarization[J]. Optics Express, 12, 3377-3382(2004).
[102] Wang X L, Chen J, Li Y N et al. Optical orbital angular momentum from the curl of polarization[J]. Physical Review Letters, 105, 253602(2010).
[103] Beckley A M, Brown T G, Alonso M A. Full Poincaré beams[J]. Optics Express, 18, 10777-10785(2010).
[104] Meister M, Winfield R J. Novel approaches to direct search algorithms for the design of diffractive optical elements[J]. Optics Communications, 203, 39-49(2002).
[105] Sun Q, Ren Y X, Yao K et al. Algorithm for diffractive optical element of array optical tweezers[J]. Chinese Journal of Lasers, 38, 0109003(2011).
[106] Rinne J W, Wiltzius P. Design of holographic structures using genetic algorithms[J]. Optics Express, 14, 9909-9916(2006).
[107] Lenton I C D, Volpe G, Stilgoe A B et al. Machine learning reveals complex behaviours in optically trapped particles[J]. Machine Learning: Science and Technology, 1, 045009(2020).
[108] Nolte S, Momma C, Kamlage G et al. Polarization effects in ultrashort-pulse laser drilling[J]. Applied Physics A, 68, 563-567(1999).
[109] Venkatakrishnan K, Tan B, Stanley P et al. The effect of polarization on ultrashort pulsed laser ablation of thin metal films[J]. Journal of Applied Physics, 92, 1604-1607(2002).
[110] Allegre O J, Jin Y, Perrie W et al. Complete wavefront and polarization control for ultrashort-pulse laser microprocessing[J]. Optics Express, 21, 21198-21207(2013).
[111] Cai M Q, Wang Q, Tu C H et al. Dynamically taming focal fields of femtosecond lasers for fabricating microstructures[J]. Chinese Optics Letters, 20, 010502(2022).
[112] Mills B, Heath D J, Grant-Jacob J A et al. Predictive capabilities for laser machining via a neural network[J]. Optics Express, 26, 17245-17253(2018).
[113] Teixidor D, Grzenda M, Bustillo A et al. Modeling pulsed laser micromachining of micro geometries using machine-learning techniques[J]. Journal of Intelligent Manufacturing, 26, 801-814(2015).
[114] Xie Y H, Heath D J, Grant-Jacob J A et al. Deep learning for the monitoring and process control of femtosecond laser machining[J]. Journal of Physics: Photonics, 1, 035002(2019).
[115] McDonnell M D T, Arnaldo D, Pelletier E et al. Machine learning for multi-dimensional optimisation and predictive visualisation of laser machining[J]. Journal of Intelligent Manufacturing, 32, 1471-1483(2021).
[116] Behbahani R, Yazdani Sarvestani H, Fatehi E et al. Machine learning-driven process of alumina ceramics laser machining[J]. Physica Scripta, 98, 015834(2023).
[117] Yi A L, Yan L S, Pan Y et al. Transmission of multi-dimensional signals for next generation optical communication systems[J]. Optics Communications, 408, 42-52(2018).
[118] Huang H, Xie G D, Yan Y et al. 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength[J]. Optics Letters, 39, 197-200(2014).
[119] Lei T, Zhang M, Li Y R et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings[J]. Light: Science & Applications, 4, e257(2015).
[120] Zhu L, Zhu G X, Wang A D et al. 18 km low-crosstalk OAM + WDM transmission with 224 individual channels enabled by a ring-core fiber with large high-order mode group separation[J]. Optics Letters, 43, 1890-1893(2018).
[121] Kaushal H, Kaddoum G. Optical communication in space: challenges and mitigation techniques[J]. IEEE Communications Surveys & Tutorials, 19, 57-96(2017).
[122] Rodenburg B, Lavery M P J, Malik M et al. Influence of atmospheric turbulence on states of light carrying orbital angular momentum[J]. Optics Letters, 37, 3735-3737(2012).
[123] Ren Y X, Xie G D, Huang H et al. Adaptive-optics-based simultaneous pre- and post-turbulence compensation of multiple orbital-angular-momentum beams in a bidirectional free-space optical link[J]. Optica, 1, 376-382(2014).
[124] Huang H, Cao Y W, Xie G D et al. Crosstalk mitigation in a free-space orbital angular momentum multiplexed communication link using 4×4 MIMO equalization[J]. Optics Letters, 39, 4360-4363(2014).
[125] Lohani S, Glasser R T. Turbulence correction with artificial neural networks[J]. Optics Letters, 43, 2611-2614(2018).
[126] Wang Z K, Dedo M I, Guo K et al. Efficient recognition of the propagated orbital angular momentum modes in turbulences with the convolutional neural network[J]. IEEE Photonics Journal, 11, 7903614(2019).
[127] Ragheb A, Saif W, Trichili A et al. Identifying structured light modes in a desert environment using machine learning algorithms[J]. Optics Express, 28, 9753-9763(2020).
[128] Na Y, Ko D K. Deep-learning-based high-resolution recognition of fractional-spatial-mode-encoded data for free-space optical communications[J]. Scientific Reports, 11, 2678(2021).
[129] Jiang H L, Fu Q, Zhang Y L et al. Discussion of the laser ranging with polarization spectral imaging observations and communication technology for space debris[J]. Infrared and Laser Engineering, 45, 0401001(2016).
[130] Zhao Y F, Wang J. High-base vector beam encoding/decoding for visible-light communications[J]. Optics Letters, 40, 4843-4846(2015).
Get Citation
Copy Citation Text
Yuncong Ma, Zhaoheng Liang, Lin Ling, Yuankai Guo, Zihao Li, Xiaoming Wei, Zhongmin Yang. Intelligent Manipulation of Multi-Dimensional Laser Technologies and Applications[J]. Chinese Journal of Lasers, 2023, 50(11): 1101004
Category: laser devices and laser physics
Received: Mar. 21, 2023
Accepted: Apr. 24, 2023
Published Online: May. 29, 2023
The Author Email: Wei Xiaoming (xmwei@scut.edu.cn), Yang Zhongmin (yangzm@scut.edu.cn)