Chinese Journal of Lasers, Volume. 50, Issue 9, 0907301(2023)

Foundation of Brain‐Machine Interfaces: Neurons and Diodes

Xing Sheng1、*, Wenxin Zhao1, Lizhu Li1, Yunxiang Huang1, and He Ding2
Author Affiliations
  • 1Department of Electronic Engineering and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
  • 2School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • show less
    References(98)

    [1] Grassi G. Sympathetic neural activity in hypertension and related diseases[J]. American Journal of Hypertension, 23, 1052-1060(2010).

    [2] Hou Y N, Wu X M, Hallett M et al. Frequency-dependent neural activity in Parkinson’s disease[J]. Human Brain Mapping, 35, 5815-5833(2014).

    [3] Yuan P, Zhang M Y, Tong L et al. PLD3 affects axonal spheroids and network defects in Alzheimer’s disease[J]. Nature, 612, 328-337(2022).

    [4] Oswal A, Cao C Y, Yeh C H et al. Neural signatures of hyperdirect pathway activity in Parkinson’s disease[J]. Nature Communications, 12, 5185(2021).

    [5] Won S M, Song E, Reeder J T et al. Emerging modalities and implantable technologies for neuromodulation[J]. Cell, 181, 115-135(2020).

    [6] Patel S R, Lieber C M. Precision electronic medicine in the brain[J]. Nature Biotechnology, 37, 1007-1012(2019).

    [7] Chen R, Canales A, Anikeeva P. Neural recording and modulation technologies[J]. Nature Reviews Materials, 2, 16093(2017).

    [8] Kong L J, Jin C, Jin G F. Advances on in vivo high-spatial-resolution neural manipulation based on optogenetics[J]. Chinese Journal of Lasers, 48, 1507003(2021).

    [9] Liu Y, Liu D Y, Zhang Y et al. A portable fNIRS-topography system for BCI applications: full parallel detection and pilot paradigm validation[J]. Chinese Journal of Lasers, 48, 1107001(2021).

    [10] Abbott A. How the world’s biggest brain maps could transform neuroscience[J]. Nature, 598, 22-25(2021).

    [11] Pu M M, Xu B, Tan T N. Brain science and brain-inspired intelligence technology: an overview[J]. Bulletin of Chinese Academy of Sciences, 31, 725-736, 714(2016).

    [12] Frank J A, Antonini M J, Anikeeva P. Next-generation interfaces for studying neural function[J]. Nature Biotechnology, 37, 1013-1023(2019).

    [13] Hong G S, Lieber C M. Novel electrode technologies for neural recordings[J]. Nature Reviews Neuroscience, 20, 330-345(2019).

    [14] Kim M G, Kamimura H A S, Lee S A et al. Image-guided focused ultrasound modulates electrically evoked motor neuronal activity in the mouse peripheral nervous system in vivo[J]. Journal of Neural Engineering, 17, 026026(2020).

    [15] Hong G S, Fu T M, Qiao M et al. A method for single-neuron chronic recording from the retina in awake mice[J]. Science, 360, 1447-1451(2018).

    [16] Chiong J A, Tran H, Lin Y J et al. Integrating emerging polymer chemistries for the advancement of recyclable, biodegradable, and biocompatible electronics[J]. Advanced Science, 8, e2101233(2021).

    [17] Woods G A, Rommelfanger N J, Hong G S. Bioinspired materials for in vivo bioelectronic neural interfaces[J]. Matter, 3, 1087-1113(2020).

    [18] Lago N, Cester A. Flexible and organic neural interfaces: a review[J]. Applied Sciences, 7, 1292(2017).

    [19] Lu C, Park S, Richner T J et al. Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits[J]. Science Advances, 3, e1600955(2017).

    [20] Choi S, Han S I, Jung D et al. Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics[J]. Nature Nanotechnology, 13, 1048-1056(2018).

    [21] Gutruf P, Krishnamurthi V, Vázquez-Guardado A et al. Fully implantable optoelectronic systems for battery-free, multimodal operation in neuroscience research[J]. Nature Electronics, 1, 652-660(2018).

    [23] Wentz C T, Bernstein J G, Monahan P et al. A wirelessly powered and controlled device for optical neural control of freely-behaving animals[J]. Journal of Neural Engineering, 8, 046021(2011).

    [24] Piech D K, Johnson B C, Shen K et al. A wireless millimetre-scale implantable neural stimulator with ultrasonically powered bidirectional communication[J]. Nature Biomedical Engineering, 4, 207-222(2020).

    [25] Zhou A, Santacruz S R, Johnson B C et al. A wireless and artefact-free 128-channel neuromodulation device for closed-loop stimulation and recording in non-human primates[J]. Nature Biomedical Engineering, 3, 15-26(2019).

    [26] Lee G H, Moon H, Kim H et al. Multifunctional materials for implantable and wearable photonic healthcare devices[J]. Nature Reviews Materials, 5, 149-165(2020).

    [27] Shi Z, Li L Z, Zhao Y et al. Implantable optoelectronic devices and systems for biomedical application[J]. Chinese Journal of Lasers, 45, 0207001(2018).

    [28] Liu X, Ren C, Lu Y C et al. Multimodal neural recordings with neuro-FITM uncover diverse patterns of cortical–hippocampal interactions[J]. Nature Neuroscience, 24, 886-896(2021).

    [29] Baldo T A, de Lima L F, Mendes L F et al. Wearable and biodegradable sensors for clinical and environmental applications[J]. ACS Applied Electronic Materials, 3, 68-100(2021).

    [30] Luo L B, Zhang X X, Li C et al. Fabrication of PdSe2/GaAs heterojunction for sensitive near-infrared photovoltaic detector and image sensor application[J]. Chinese Journal of Chemical Physics, 33, 733-742(2020).

    [31] Blokhin S A, Sakharov A V, Nadtochy A M et al. AlGaAs/GaAs photovoltaic cells with an array of InGaAs QDs[J]. Semiconductors, 43, 514-518(2009).

    [32] Kim D H, Lu N S, Ma R et al. Epidermal electronics[J]. Science, 333, 838-843(2011).

    [33] Hwang S W, Tao H, Kim D H et al. A physically transient form of silicon electronics[J]. Science, 337, 1640-1644(2012).

    [34] Li L Z, Lu L H, Ren Y Q et al. Colocalized, bidirectional optogenetic modulations in freely behaving mice with a wireless dual-color optoelectronic probe[J]. Nature Communications, 13, 839(2022).

    [36] Lu L Y, Gutruf P, Xia L et al. Wireless optoelectronic photometers for monitoring neuronal dynamics in the deep brain[J]. Proceedings of the National Academy of Sciences of the United States of America, 115, E1374-E1383(2018).

    [37] Ding H, Lü G Q, Shi Z et al. Optoelectronic sensing of biophysical and biochemical signals based on photon recycling of a micro-LED[J]. Nano Research, 14, 3208-3213(2021).

    [38] Deisseroth K, Feng G P, Majewska A K et al. Next-generation optical technologies for illuminating genetically targeted brain circuits[J]. The Journal of Neuroscience, 26, 10380-10386(2006).

    [39] Wu F, Stark E, Ku P C et al. Monolithically integrated μLEDs on silicon neural probes for high-resolution optogenetic studies in behaving animals[J]. Neuron, 88, 1136-1148(2015).

    [40] Zhang F, Wang L P, Brauner M et al. Multimodal fast optical interrogation of neural circuitry[J]. Nature, 446, 633-639(2007).

    [41] Boyden E S, Zhang F, Bamberg E et al. Millisecond-timescale, genetically targeted optical control of neural activity[J]. Nature Neuroscience, 8, 1263-1268(2005).

    [42] Karl D. Optogenetics[J]. Nature Methods, 8, 26-29(2011).

    [43] Adamantidis A R, Zhang F, Aravanis A M et al. Neural substrates of awakening probed with optogenetic control of hypocretin neurons[J]. Nature, 450, 420-424(2007).

    [44] Kim T I, McCall J G, Jung Y H et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics[J]. Science, 340, 211-216(2013).

    [45] Park S I, Brenner D S, Shin G et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics[J]. Nature Biotechnology, 33, 1280-1286(2015).

    [46] Montgomery K L, Yeh A J, Ho J S et al. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice[J]. Nature Methods, 12, 969-974(2015).

    [47] Inoue K I, Takada M, Matsumoto M. Neuronal and behavioural modulations by pathway-selective optogenetic stimulation of the primate oculomotor system[J]. Nature Communications, 6, 8378(2015).

    [48] Ferenczi E A, Vierock J, Atsuta-Tsunoda K et al. Optogenetic approaches addressing extracellular modulation of neural excitability[J]. Scientific Reports, 6, 23947(2016).

    [50] Frontera J L, Baba Aissa H, Sala R W et al. Bidirectional control of fear memories by cerebellar neurons projecting to the ventrolateral periaqueductal grey[J]. Nature Communications, 11, 5207(2020).

    [51] Shi L L, Jiang Y, Fernandez F R et al. Non-genetic photoacoustic stimulation of single neurons by a tapered fiber optoacoustic emitter[J]. Light: Science & Applications, 10, 143(2021).

    [52] Duke A R, Jenkins M W, Lu H et al. Transient and selective suppression of neural activity with infrared light[J]. Scientific Reports, 3, 2600(2013).

    [53] Carvalho-de-Souza J L, Treger J S, Dang B B et al. Photosensitivity of neurons enabled by cell-targeted gold nanoparticles[J]. Neuron, 86, 207-217(2015).

    [54] Yoo S, Park J H, Nam Y. Single-cell photothermal neuromodulation for functional mapping of neural networks[J]. ACS Nano, 13, 544-551(2019).

    [55] Ghezzi D, Antognazza M R, Maccarone R et al. A polymer optoelectronic interface restores light sensitivity in blind rat retinas[J]. Nature Photonics, 7, 400-406(2013).

    [56] Martino N, Feyen P, Porro M et al. Photothermal cellular stimulation in functional bio-polymer interfaces[J]. Scientific Reports, 5, 8911(2015).

    [57] Jiang Y, Huang Y, Luo X et al. Neural stimulation in vitro and in vivo by photoacoustic nanotransducers[J]. Matter, 4, 654-674(2021).

    [58] Rand D, Jakešová M, Lubin G et al. Direct electrical neurostimulation with organic pigment photocapacitors[J]. Advanced Materials, 30, e1707292(2018).

    [59] Jakešová M, Silverå Ejneby M, Đerek V et al. Optoelectronic control of single cells using organic photocapacitors[J]. Science Advances, 5, eaav5265(2019).

    [60] Silverå Ejneby M, Jakešová M, Ferrero J J et al. Chronic electrical stimulation of peripheral nerves via deep-red light transduced by an implanted organic photocapacitor[J]. Nature Biomedical Engineering, 6, 741-753(2022).

    [61] Airaghi Leccardi M J I, Chenais N A L, Ferlauto L et al. Photovoltaic organic interface for neuronal stimulation in the near-infrared[J]. Communications Materials, 1, 21(2020).

    [62] Han M, Srivastava S B, Yildiz E et al. Organic photovoltaic pseudocapacitors for neurostimulation[J]. ACS Applied Materials & Interfaces, 12, 42997-43008(2020).

    [63] Parameswaran R, Carvalho-de-Souza J L, Jiang Y W et al. Photoelectrochemical modulation of neuronal activity with free-standing coaxial silicon nanowires[J]. Nature Nanotechnology, 13, 260-266(2018).

    [64] Jiang Y W, Li X J, Liu B et al. Rational design of silicon structures for optically controlled multiscale biointerfaces[J]. Nature Biomedical Engineering, 2, 508-521(2018).

    [65] Tang J, Qin N, Chong Y et al. Nanowire arrays restore vision in blind mice[J]. Nature Communications, 9, 786(2018).

    [66] Jiang Y W, Carvalho-de-Souza J L, Wong R C S et al. Heterogeneous silicon mesostructures for lipid-supported bioelectric interfaces[J]. Nature Materials, 15, 1023-1030(2016).

    [67] Han M, Bahmani Jalali H, Yildiz E et al. Photovoltaic neurointerface based on aluminum antimonide nanocrystals[J]. Communications Materials, 2, 19(2021).

    [68] Rastogi S K, Garg R, Scopelliti M G et al. Remote nongenetic optical modulation of neuronal activity using fuzzy graphene[J]. Proceedings of the National Academy of Sciences of the United States of America, 117, 13339-13349(2020).

    [69] Savchenko A, Cherkas V, Liu C et al. Graphene biointerfaces for optical stimulation of cells[J]. Science Advances, 4, eaat0351(2018).

    [70] Eom K, Byun K M, Jun S B et al. Theoretical study on gold-nanorod-enhanced near-infrared neural stimulation[J]. Biophysical Journal, 115, 1481-1497(2018).

    [71] Carvalho-de-Souza J L, Pinto B I, Pepperberg D R et al. Optocapacitive generation of action potentials by microsecond laser pulses of nanojoule energy[J]. Biophysical Journal, 114, 283-288(2018).

    [72] Wells J, Kao C, Konrad P et al. Biophysical mechanisms of transient optical stimulation of peripheral nerve[J]. Biophysical Journal, 93, 2567-2580(2007).

    [73] Owen S F, Liu M H, Kreitzer A C. Thermal constraints on in vivo optogenetic manipulations[J]. Nature Neuroscience, 22, 1061-1065(2019).

    [74] Wiegert J S, Mahn M, Prigge M et al. Silencing neurons: tools, applications, and experimental constraints[J]. Neuron, 95, 504-529(2017).

    [75] Schoen I, Fromherz P. The mechanism of extracellular stimulation of nerve cells on an electrolyte-oxide-semiconductor capacitor[J]. Biophysical Journal, 92, 1096-1111(2007).

    [76] Benfenati V, Toffanin S, Bonetti S et al. A transparent organic transistor structure for bidirectional stimulation and recording of primary neurons[J]. Nature Materials, 12, 672-680(2013).

    [77] Zhao Y X, Araki S, Wu J H et al. An expanded palette of genetically encoded Ca²⁺ indicators[J]. Science, 333, 1888-1891(2011).

    [78] Akerboom J, Chen T W, Wardill T J et al. Optimization of a GCaMP calcium indicator for neural activity imaging[J]. The Journal of Neuroscience, 32, 13819-13840(2012).

    [79] Chen T W, Wardill T J, Sun Y et al. Ultrasensitive fluorescent proteins for imaging neuronal activity[J]. Nature, 499, 295-300(2013).

    [80] Warden M R, Cardin J A, Deisseroth K. Optical neural interfaces[J]. Annual Review of Biomedical Engineering, 16, 103-129(2014).

    [81] Lin M Z, Schnitzer M J. Genetically encoded indicators of neuronal activity[J]. Nature Neuroscience, 19, 1142-1153(2016).

    [82] Liu J W, Brown A K, Meng X L et al. A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity[J]. Proceedings of the National Academy of Sciences of the United States of America, 104, 2056-2061(2007).

    [83] Khandpur R S. Fluorometer[M]. Compendium of Biomedical Instrumentation, 823-827(2019).

    [84] Yun S H, Kwok S J J. Light in diagnosis, therapy and surgery[J]. Nature Biomedical Engineering, 1, 8(2017).

    [85] Warden M R, Cardin J A, Deisseroth K. Optical neural interfaces[J]. Annual Review of Biomedical Engineering, 16, 103-129(2014).

    [86] Liu C B, Zhao Y, Cai X et al. A wireless, implantable optoelectrochemical probe for optogenetic stimulation and dopamine detection[J]. Microsystems & Nanoengineering, 6, 64(2020).

    [87] Gao W, Emaminejad S, Nyein H Y Y et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis[J]. Nature, 529, 509-514(2016).

    [88] Chung H U, Kim B H, Lee J Y et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care[J]. Science, 363, eaau0780(2019).

    [89] Bariya M, Nyein H Y Y, Javey A. Wearable sweat sensors[J]. Nature Electronics, 1, 160-171(2018).

    [90] Pazos-Outón L M, Szumilo M, Lamboll R et al. Photon recycling in lead iodide perovskite solar cells[J]. Science, 351, 1430-1433(2016).

    [91] Miller O D, Yablonovitch E, Kurtz S R. Strong internal and external luminescence as solar cells approach the Shockley-queisser limit[J]. IEEE Journal of Photovoltaics, 2, 303-311(2012).

    [92] Araujo G L, Marti A. Limiting efficiencies of GaAs solar cells[J]. IEEE Transactions on Electron Devices, 37, 1402-1405(1990).

    [93] Gunn J B. Microwave oscillations of current in Ⅲ-V semiconductors[J]. Solid State Communications, 88, 883-886(1993).

    [94] Roelkens G, Liu L, Liang D et al. Ⅲ-V/silicon photonics for on-chip and intra-chip optical interconnects[J]. Laser & Photonics Reviews, 4, 751-779(2010).

    [95] Sheng X, Yun M H, Zhang C et al. Device architectures for enhanced photon recycling in thin-film multijunction solar cells[J]. Advanced Energy Materials, 5, 070006(2015).

    [96] Ding H, Hong H, Cheng D L et al. Power- and spectral-dependent photon-recycling effects in a double-junction gallium arsenide photodiode[J]. ACS Photonics, 6, 59-65(2019).

    [97] Martı́ A, Balenzategui J L, Reyna R F. Photon recycling and Shockley’s diode equation[J]. Journal of Applied Physics, 82, 4067-4075(1997).

    [98] Richter C P. Physiological factors involved in the electrical resistance of the skin[J]. American Journal of Physiology-Legacy Content, 88, 596-615(1929).

    Tools

    Get Citation

    Copy Citation Text

    Xing Sheng, Wenxin Zhao, Lizhu Li, Yunxiang Huang, He Ding. Foundation of Brain‐Machine Interfaces: Neurons and Diodes[J]. Chinese Journal of Lasers, 2023, 50(9): 0907301

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Neurophotonics and Optical Regulation

    Received: Dec. 28, 2022

    Accepted: Feb. 9, 2023

    Published Online: Apr. 24, 2023

    The Author Email: Sheng Xing (xingsheng@tsinghua.edu.cn)

    DOI:10.3788/CJL221562

    Topics