Laser & Optoelectronics Progress, Volume. 60, Issue 22, 2212008(2023)

Infrared Ship Detection Using Attention Mechanism and Multiscale Fusion

Shen Zhang1, Lin Hu1,2, Xiang'e Sun1,2、*, and Meihua Liu1,2
Author Affiliations
  • 1School of Electronic Information, Yangtze University, Jingzhou 434023, Hubei , China
  • 2Intelligence Research Institute, Yangtze University, Jingzhou 434023, Hubei , China
  • show less
    References(24)

    [1] Hu J M, Zhi X Y, Zhang W et al. Salient ship detection via background prior and foreground constraint in remote sensing images[J]. Remote Sensing, 12, 3370(2020).

    [2] Hu J M, Zhi X Y, Shi T J et al. PAG-YOLO: a portable attention-guided YOLO network for small ship detection[J]. Remote Sensing, 13, 3059(2021).

    [3] Girshick R, Donahue J, Darrell T et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C], 580-587(2014).

    [4] Girshick R. Fast R-CNN[C], 1440-1448(2016).

    [5] Ren S Q, He K M, Girshick R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).

    [6] Redmon J, Divvala S, Girshick R et al. You only look once: unified, real-time object detection[C], 779-788(2016).

    [9] Liu W, Anguelov D, Erhan D et al. SSD: single shot MultiBox detector[M]. Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016. Lecture notes in computer science, 9905, 21-37(2016).

    [10] Miao R, Jiang H X, Tian F Z. Robust ship detection in infrared images through multiscale feature extraction and lightweight CNN[J]. Sensors, 22, 1226(2022).

    [11] Wang H Y, Wang C P, Fu Q et al. Lightweight ship detection based on optical remote sensing images for embedded platform[J]. Acta Optica Sinica, 43, 1212001(2023).

    [12] Xu Z J, Bai X. Small ship target detection method for remote sensing images based on dual feature enhancement[J]. Acta Optica Sinica, 42, 1828002(2022).

    [13] Liu S W, Kong W M, Chen X F et al. Multi-scale ship detection algorithm based on a lightweight neural network for spaceborne SAR images[J]. Remote Sensing, 14, 1149(2022).

    [14] Ye J, Yuan Z Y, Qian C et al. CAA-YOLO: combined-attention-augmented YOLO for infrared ocean ships detection[J]. Sensors, 22, 3782(2022).

    [16] Howard A, Sandler M, Chen B et al. Searching for MobileNetV3[C], 1314-1324(2020).

    [17] Ma N N, Zhang X Y, Zheng H T et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[M]. Ferrari V, Hebert M, Sminchisescu C, et al. Computer Vision-ECCV 2018. Lecture notes in computer science, 11218, 122-138(2018).

    [18] Han K, Wang Y H, Tian Q et al. GhostNet: more features from cheap operations[C], 1577-1586(2020).

    [19] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C], 7132-7141(2018).

    [20] Tan M X, Pang R M, Le Q V. EfficientDet: scalable and efficient object detection[C], 10778-10787(2020).

    [21] Zhou Q K, Zhang W, Li D J et al. Ship classification and detection method for optical remote sensing images based on improved YOLOv5s[J]. Laser & Optoelectronics Progress, 59, 1628008(2022).

    [22] Zheng Z H, Wang P, Ren D W et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 52, 8574-8586(2022).

    [24] Zhang Y F, Ren W Q, Zhang Z et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 506, 146-157(2022).

    Tools

    Get Citation

    Copy Citation Text

    Shen Zhang, Lin Hu, Xiang'e Sun, Meihua Liu. Infrared Ship Detection Using Attention Mechanism and Multiscale Fusion[J]. Laser & Optoelectronics Progress, 2023, 60(22): 2212008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: Jun. 5, 2023

    Accepted: Jul. 24, 2023

    Published Online: Nov. 6, 2023

    The Author Email: Xiang'e Sun (xinges2000@yangtzeu.edu.cn)

    DOI:10.3788/LOP231462

    Topics