Laser & Optoelectronics Progress, Volume. 62, Issue 2, 0228004(2025)

Incorporation of Multiscale Hierarchical Features for Remote-Sensing Classification

Fu Lü1,2、*, Yuxuan Xie1, and Yongan Feng1
Author Affiliations
  • 1School of Software, Liaoning Technical University, Huludao 125105, Liaoning , China
  • 2Department of Basic Teching, Liaoning Technical University, Huludao 125105, Liaoning , China
  • show less
    Figures & Tables(17)
    MHFNet structure diagram
    Structure diagrams of two attention mechanisms. (a) MHSA; (b) MSIA
    Various FFN structure diagrams. (a) FFN; (b) IRFFN; (c) GDFN; (d) MGFN
    Structure diagrams of two token extractors. (a) STE; (b) CTE
    Scene instances of two datasets. (a) Airplane; (b) beach; (c) ship; (d) cloud; (e) island; (f) bridge; (g) parking; (h) center; (i) storage tank; (j) playground
    Confusion matrix of AID dataset under 50% training ratio
    Confusion matrix of NWPU-RESISC45 dataset under 20% training ratio
    Visual CAM comparison. (a) Basketball court; (b) bridge; (c) church; (d) freeway; (e) roundabout; (f) ship; (g) parking
    • Table 1. Experimental configuration

      View table

      Table 1. Experimental configuration

      ParameterValue
      CPUi7-12700
      GPUNVIDIA GeForce RTX 3090Ti 24 GB
      LanguagePython 3.9.12
      Operating systemWindows 11
      Deep learning frameworkPyTorch 1.11.0+CUDA 11.3
    • Table 2. Key parameter setting

      View table

      Table 2. Key parameter setting

      ParameterValue
      Epochs300
      Initial learning rate0.0002
      Final learning rate0.00001
      OptimizerAdamW
      Batch size128
      Warmup20
      Weight decay0.003
      Random seed42
    • Table 3. OA of different models on AID dataset and NWPU-RESISC45 dataset

      View table

      Table 3. OA of different models on AID dataset and NWPU-RESISC45 dataset

      MethodParameters /106NWPU(1∶9)NWPU(2∶8)AID(2∶8)AID(5∶5)
      VGGNet1627138.3676.4779.7986.5989.64
      GoogleNet2754.4076.1978.4883.4486.39
      ResNet502923.5886.2388.9392.3994.96
      DenseNet121307.9888.3190.4793.7694.73
      ViT-B1185.6387.5990.8791.1694.44
      PVT-M3143.3290.5192.6692.8495.93
      DeiT-B3285.9791.8693.8393.4196.04
      Swin-B3389.7491.8094.1494.8697.80
      EMTCAL3491.6393.6594.6996.41
      GCSANet358.1193.3994.6595.9697.53
      MGSNet3692.4094.5795.4697.18
      EMSCNet(ViT-B)37173.6493.5895.3796.0297.35
      MHFNet41.8594.0995.7397.1298.63
    • Table 4. Impact of MSIT and ATM on model performance

      View table

      Table 4. Impact of MSIT and ATM on model performance

      ModuleParameters /106NWPU(1∶9)NWPU(2∶8)AID(2∶8)AID(5∶5)
      None31.1892.2794.1095.3896.93
      ATM32.5392.8894.7496.0597.57
      ATM+MSIT41.8594.0995.7397.1298.63
    • Table 5. Impact of number of MSITs in each branch on model performance

      View table

      Table 5. Impact of number of MSITs in each branch on model performance

      OptionParameters /106NWPU(1∶9)NWPU(2∶8)AID(2∶8)AID(5∶5)
      N=032.5392.8894.7496.0597.57
      N=137.6893.7995.5796.7498.37
      N=241.8594.0995.7397.1298.63
      N=346.0293.8295.6696.8998.46
      N=450.1893.7495.5996.7698.38
    • Table 6. Effectiveness of various components in MSIT

      View table

      Table 6. Effectiveness of various components in MSIT

      ModuleParameters /106NWPU(1∶9)NWPU(2∶8)AID(2∶8)AID(5∶5)
      None32.5392.8894.7496.0597.57
      MSIA38.4393.7395.4196.7598.30
      MSIA+MGFN41.7693.9795.6596.9498.52
      MSIA+MGFN+LRC41.8594.0995.7397.1298.63
    • Table 7. Impact of different feature extractors on model performance

      View table

      Table 7. Impact of different feature extractors on model performance

      MethodParameters /106FLOPs /GNWPU(1∶9)NWPU(2∶8)AID(2∶8)AID(5∶5)
      MHFNet(ResNet50)34.614.7192.6394.5895.3996.94
      MHFNet(ViT-B)96.1756.3093.2894.8395.2196.47
      MHFNet(Swin-B)102.3816.0993.7495.8096.8398.92
      MHFNet(FasterNet-S)41.855.1294.0995.7397.1298.63
    • Table 8. OA, precision, recall rate, and F1 score for each category in AID dataset

      View table

      Table 8. OA, precision, recall rate, and F1 score for each category in AID dataset

      CategoryOAPrecisionRecallF1 scoreCategoryOAPrecisionRecallF1 score
      199.6399.26100.0099.6316100.00100.0099.5599.77
      299.12100.00100.00100.001795.0495.9394.1995.05
      3100.00100.00100.00100.0018100.00100.00100.00100.00
      498.8199.7899.3899.581999.8399.0498.5998.81
      599.4499.0099.5099.252099.4599.3998.2298.80
      699.4799.2290.8194.832199.61100.00100.00100.00
      797.2297.67100.0098.822299.80100.00100.00100.00
      897.0897.6198.3797.992396.3396.3595.6095.97
      997.8797.23100.0098.602498.0998.7898.1198.44
      1097.9498.78100.0099.392596.9197.7297.8397.77
      1198.9198.72100.0099.362697.3299.5998.6599.12
      1299.08100.00100.00100.002795.1595.2599.6097.38
      1398.5299.6599.4199.532899.4499.1696.1997.65
      1497.6698.15100.0099.0729100.00100.0099.0199.50
      1599.1899.26100.0099.633099.28100.00100.00100.00
    • Table 9. OA, precision, recall rate, and F1 score for each category in NWPU-RESISC45 dataset

      View table

      Table 9. OA, precision, recall rate, and F1 score for each category in NWPU-RESISC45 dataset

      CategoryOAPrecisionRecallF1 scoreCategoryOAPrecisionRecallF1 score
      198.6799.47100.0099.732491.9691.5788.2789.89
      297.6098.7598.1698.452597.3898.16100.0099.07
      394.1494.5694.9394.742697.0198.9396.3597.62
      498.8899.1591.6295.242796.8797.4294.1295.74
      598.4599.4396.1797.772890.7190.9184.7587.72
      697.5798.1697.3397.742995.4896.88100.0098.42
      7100.00100.0099.8199.903096.9396.1492.1394.09
      886.4886.9288.0587.483193.2693.6893.6993.68
      998.5598.19100.0099.093296.7998.7693.4796.04
      1098.8198.4599.2798.863396.1796.8193.1994.97
      1189.9089.9896.7693.253497.5298.0694.1396.05
      1293.1993.1292.1192.613597.5898.0397.5697.79
      1391.3091.2298.6594.7936100.00100.00100.00100.00
      1497.2798.1598.7098.423796.1598.5697.3197.93
      1596.3197.0790.6293.733899.22100.0099.2399.61
      1699.23100.00100.00100.003995.5796.2797.5696.91
      1785.1885.5097.2991.014093.4094.9098.2296.53
      1899.63100.00100.00100.004195.7096.52100.0098.23
      1993.4193.1993.8693.524286.5186.4487.7487.09
      2092.4992.2692.8192.534393.9793.2098.0895.58
      2193.5793.0497.3295.134498.1999.6597.1698.39
      2291.4091.2995.8593.514597.4598.4789.9194.00
      2396.1397.5095.9696.72
    Tools

    Get Citation

    Copy Citation Text

    Fu Lü, Yuxuan Xie, Yongan Feng. Incorporation of Multiscale Hierarchical Features for Remote-Sensing Classification[J]. Laser & Optoelectronics Progress, 2025, 62(2): 0228004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Apr. 26, 2024

    Accepted: Jun. 11, 2024

    Published Online: Jan. 7, 2025

    The Author Email:

    DOI:10.3788/LOP241179

    CSTR:32186.14.LOP241179

    Topics