Acta Optica Sinica, Volume. 39, Issue 3, 0301004(2019)

Design and Simulation of Pure Rotational Raman Lidar System for Daytime Detection of Atmospheric Temperature

Fei Gao, Bo Huang, Dongchen Shi, Qingsong Zhu, Rui Zhang, Li Wang, Shichun Li, and Dengxin Hua*
Author Affiliations
  • School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
  • show less
    Figures & Tables(14)
    Spectral relative intensity distribution. (a) Mie-Rayleigh scattering spectrum; (b) pure rotational Raman spectra
    Spectral intensity diagram of solar radiation
    Ozone absorption scattering cross sections of
    Measurement uncertainty of relative temperature under different temperature pairs (All ΔT are the results of the ratio processing of the minimum value of the corresponding graph). (a) Anti-Stokes (225 K, 220 K); (b) Anti-Stokes (250 K, 245 K); (c) Anti-Stokes 270 K; (d) Stokes (225 K, 220 K); (e) Stokes(250 K,245 K); (f) Stokes (275 K,270 K)
    Schematic of solar-blind ultraviolet pure rotational Raman lidar system
    Diffraction grating spectrometers. (a) Single diffraction; (b) double diffractions
    Comparison of diffraction spots of grating spectrometer. (a) Single diffraction; (b) double diffraction
    triple-diffraction double grating polychromator
    Comparison of diffraction spots. (a) Double diffraction spot; (b) triple diffraction spot
    Effect ofozone on detection of solar-blind Raman lidar. (a) Difference of atmospheric transmission due to ozone absorption cross section of pure rotational Raman spectra; (b) effect of atmospheric transmission with and without ozone absorption
    Fluorescence intensity of biomolecules for 266 nm excitation[22]
    Simulation results of solar-blind ultraviolet pure rotational Raman lidar. (a) Signal intensity of each channel; (b) signal-to-noise ratio of each channel
    • Table 1. Relevant parameters of pure rotational Raman spectra

      View table

      Table 1. Relevant parameters of pure rotational Raman spectra

      MoleculeB0 /cm-1gJ(even)gJ(odd)Iγ2 /(10-48cm6)h /(J∙s)c /(m∙s-1)k /(J∙K-1)
      N21.9895006310.5096.626×10-342.9979×1081.38×10-23
      O21.1376820101.27
    • Table 2. Parameters of solar-blind ultraviolet pure rotational Raman lidar system

      View table

      Table 2. Parameters of solar-blind ultraviolet pure rotational Raman lidar system

      ParameterValueParameterValue
      Transmitter Nd…YAG pulsed laserWavelength /nm266.0Receiver Cassegrain telescopeDiameter /mm400
      Repetition rate /nm10Focal length /mm3000
      Pulse energy /nm150Field of view /mrad0.2
      Grating(G)Groove number /(line·mm-1)3600Mirror(M)/Lens(L)Dimension(M)/(mm×mm×mm)112×112×20
      Blazed wavelength /nm230Focal length(L) /mm250
      Dimension /(mm×mm×mm)120×100×20Diameter(L) /mm125
      Detector PMT(HamamatsuR7154)Quantum efficiency0.23FiberDiameter /μm300-500
      Gain1.0×107
    Tools

    Get Citation

    Copy Citation Text

    Fei Gao, Bo Huang, Dongchen Shi, Qingsong Zhu, Rui Zhang, Li Wang, Shichun Li, Dengxin Hua. Design and Simulation of Pure Rotational Raman Lidar System for Daytime Detection of Atmospheric Temperature[J]. Acta Optica Sinica, 2019, 39(3): 0301004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Atmospheric Optics and Oceanic Optics

    Received: Jul. 31, 2018

    Accepted: Oct. 30, 2018

    Published Online: May. 10, 2019

    The Author Email:

    DOI:10.3788/AOS201939.0301004

    Topics