Laser & Optoelectronics Progress, Volume. 60, Issue 3, 0312009(2023)

Research Progress of High Precision Free Space Optical Time-Frequency Reference Transfer Technology

Liandong Yu*, Jiasheng Zhu, and Yang Lu
Author Affiliations
  • College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266555, Shandong, China
  • show less
    References(46)

    [1] Riehle F. Optical clock networks[J]. Nature Photonics, 11, 25-31(2017).

    [2] He Y B, Baldwin K G H, Orr B J et al. Long-distance telecom-fiber transfer of a radio-frequency reference for radio astronomy[J]. Optica, 5, 138-146(2018).

    [3] Li B H, Rizos C, Lee H K et al. A GPS-slaved time synchronization system for hybrid navigation[J]. GPS Solutions, 10, 207-217(2006).

    [4] Levine J. A review of time and frequency transfer methods[J]. Metrologia, 45, S162-S174(2008).

    [5] Foreman S M, Holman K W, Hudson D D et al. Remote transfer of ultrastable frequency references via fiber networks[J]. Review of Scientific Instruments, 78, 021101(2007).

    [6] Takano T, Takamoto M, Ushijima I et al. Geopotential measurements with synchronously linked optical lattice clocks[J]. Nature Photonics, 10, 662-666(2016).

    [7] Gozzard D R, Howard L A, Dix-Matthews B P et al. Ultrastable free-space laser links for a global network of optical atomic clocks[J]. Physical Review Letters, 128, 020801(2022).

    [8] Hou D, Zhang D N, Sun F Y et al. Research on high-precision free-space time and frequency transfer[J]. Journal of Time and Frequency, 41, 219-227(2018).

    [9] Deng X, Liu J, Jiao D D et al. Coherent transfer of optical frequency over 112 km with Instability at the 10-20 level[J]. Chinese Physics Letters, 33, 114202(2016).

    [10] Kim J, Cox J A, Chen J et al. Drift-free femtosecond timing synchronization of remote optical and microwave sources[J]. Nature Photonics, 2, 733-736(2008).

    [11] Calonico D, Bertacco E K, Calosso C E et al. High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link[J]. Applied Physics B, 117, 979-986(2014).

    [12] Sun Y G, Xu M, Chen Y Q et al. Research progress on free-space laser time-frequency transfer[J]. Laser & Optoelectronics Progress, 57, 170004(2020).

    [13] Sinclair L C, Giorgetta F R, Swann W C et al. Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer[J]. Physical Review A, 89, 023805(2014).

    [14] Robert C, Conan J M, Wolf P. Impact of turbulence on high-precision ground-satellite frequency transfer with two-way coherent optical links[J]. Physical Review A, 93, 033860(2016).

    [15] Djerroud K, Samain E, Clairon A et al. A coherent optical link through the turbulent atmosphere[C](2010).

    [16] Gozzard D R, Schediwy S W, Stone B et al. Stabilized free-space optical frequency transfer[J]. Physical Review Applied, 10, 024046(2018).

    [17] Dix-Matthews B P, Gozzard D R, Karpathakis S F E et al. Ultra-wideband free-space optical phase stabilization[J]. IEEE Communications Letters, 25, 1610-1614(2021).

    [18] Dix-Matthews B P, Schediwy S W, Gozzard D R et al. Point-to-point stabilized optical frequency transfer with active optics[J]. Nature Communications, 12, 515(2021).

    [19] Jang H, Kim B S, Chun B J et al. Comb-rooted multi-channel synthesis of ultra-narrow optical frequencies of few Hz linewidth[J]. Scientific Reports, 9, 7652(2019).

    [20] Kang H J, Yang J, Chun B J et al. Free-space transfer of comb-rooted optical frequencies over an 18 km open-air link[J]. Nature Communications, 10, 4438(2019).

    [21] Yang J, Kang H J, Lee K et al. Phase-stabilized free-space link for optical frequency transfer[J]. Optics Communications, 504, 127481(2022).

    [22] Yang J, Lee D I, Shin D C et al. Frequency comb-to-comb stabilization over a 1.3-km free-space atmospheric optical link[J]. Light: Science & Applications, 11, 253(2022).

    [23] Sinclair L C, Swann W C, Bergeron H et al. Synchronization of clocks through 12 km of strongly turbulent air over a city[J]. Applied Physics Letters, 109, 151104(2016).

    [24] Deschênes J D, Sinclair L C, Giorgetta F R et al. Synchronization of distant optical clocks at the femtosecond level[J]. Physical Review X, 6, 021016(2016).

    [25] Sinclair L C, Swann W C, Deschênes J D et al. Optical system design for femtosecond-level synchronization of clocks[J]. Proceedings of SPIE, 9763, 976308(2016).

    [26] Swann W C, Bodine M I, Khader I et al. Measurement of the impact of turbulence anisoplanatism on precision free-space optical time transfer[J]. Physical Review A, 99, 023855(2019).

    [27] Ellis J L, Bodine M I, Swann W C et al. Scaling up frequency-comb-based optical time transfer to long terrestrial distances[J]. Physical Review Applied, 15, 034002(2021).

    [28] Fu Y, Wu H X, Yang W Z et al. Two-way femtosecond laser time transfer via a free-space link[C], 93-95(2022).

    [29] Giorgetta F R, Swann W C, Sinclair L C et al. Optical two-way time and frequency transfer over free space[J]. Nature Photonics, 7, 434-438(2013).

    [30] Sinclair L C, Bergeron H, Swann W C et al. Comparing optical oscillators across the air to milliradians in phase and 10-17 in frequency[J]. Physical Review Letters, 120, 050801(2018).

    [31] Bodine M I, Ellis J L, Swann W C et al. Optical time-frequency transfer across a free-space, three-node network[J]. APL Photonics, 5, 076113(2020).

    [32] Shen Q, Guan J Y, Zeng T et al. Experimental simulation of time and frequency transfer via an optical satellite-ground link at 10-18 instability[J]. Optica, 8, 471-476(2021).

    [33] Shen Q, Guan J Y, Ren J G et al. Free-space dissemination of time and frequency with 10-19 instability over 113 km[J]. Nature, 610, 661-666(2022).

    [34] Hou D, Zhang D N, Sun F Y et al. Free-space-based multiple-access frequency dissemination with optical frequency comb[J]. Optics Express, 26, 19199-19205(2018).

    [35] Guo G K, Hou D, Sun F Y et al. Laser-based atmospheric radio-frequency transfer with sub-picosecond timing fluctuation using single phase compensator[J]. Optics Communications, 426, 526-530(2018).

    [36] Ren J W, Hou D, Li Z et al. Outdoor atmospheric optical two-way time transfer with serial time code[J]. Review of Scientific Instruments, 92, 045102(2021).

    [37] Tian J, Li X L, Ji Z Y et al. Sub-hundred-femtosecond atmospheric radio-frequency transfer with frequency comb using fast optical phase compensation[C], 1500-1503(2021).

    [38] Harter T, Füllner C, Kemal J N et al. Generalized Kramers-Kronig receiver for coherent terahertz communications[J]. Nature Photonics, 14, 601-606(2020).

    [40] Derevianko A, Pospelov M. Hunting for topological dark matter with atomic clocks[J]. Nature Physics, 10, 933-936(2014).

    [41] Wcisło P, Ablewski P, Beloy K et al. New bounds on dark matter coupling from a global network of optical atomic clocks[J]. Science Advances, 4, eaau4869(2018).

    [42] Beloy K, Bodine M I, Bothwell T et al. Frequency ratio measurements at 18-digit accuracy using an optical clock network[J]. Nature, 591, 564-569(2021).

    [43] Boroson D M, Scozzafava J J, Murphy D V et al. The lunar laser communications demonstration (LLCD)[C], 23-28(2009).

    [44] Boroson D M, Robinson B S, Murphy D V et al. Overview and results of the lunar laser communication demonstration[J]. Proceedings of SPIE, 8971, 89710S(2014).

    [45] Cornwell D M. NASA’s optical communications program for 2017 and beyond[C], 10-14(2017).

    [46] Biswas A, Srinivasan M, Rogalin R et al. Status of NASA’s deep space optical communication technology demonstration[C], 23-27(2017).

    Tools

    Get Citation

    Copy Citation Text

    Liandong Yu, Jiasheng Zhu, Yang Lu. Research Progress of High Precision Free Space Optical Time-Frequency Reference Transfer Technology[J]. Laser & Optoelectronics Progress, 2023, 60(3): 0312009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: Sep. 30, 2022

    Accepted: Nov. 4, 2022

    Published Online: Feb. 14, 2023

    The Author Email: Liandong Yu (liandongyu@upc.edu.cn)

    DOI:10.3788/LOP222673

    Topics