Chinese Journal of Lasers, Volume. 50, Issue 17, 1714011(2023)

Intense Terahertz Generation and Its Applications in Nonlinear Research

Tianwu Wang1,2,3,4,5、*, Kai Zhang1,2, Wenyin Wei1,2, Hongbo Li1,2,3,4,5, Zhipeng Zhou1,2, Ling Cao1,2, Hong Li1,2, Guangyou Fang1,2,3,4,5, and Yirong Wu1,2,3,4,5
Author Affiliations
  • 1GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou 510700, Guangdong, China
  • 2Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou 510700, Guangdong, China
  • 3Key Laboratory of Electromagnetic Radiation and Sensing Technology, Chinese Academy of Sciences, Beijing 100190, China
  • 4Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
  • 5School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(104)

    [1] Isgandarov E, Ropagnol X, Singh M et al. Intense terahertz generation from photoconductive antennas[J]. Frontiers of Optoelectronics, 14, 64-93(2021).

    [2] Budiarto E, Margolies J, Jeong S et al. High-intensity terahertz pulses at 1-kHz repetition rate[J]. IEEE Journal of Quantum Electronics, 32, 1839-1846(1996).

    [3] Ropagnol X, Kovács Z, Gilicze B et al. Intense sub-terahertz radiation from wide-bandgap semiconductor based large-aperture photoconductive antennas pumped by UV lasers[J]. New Journal of Physics, 21, 113042(2019).

    [4] Ropagnol X, Morandotti R, Ozaki T et al. Toward high-power terahertz emitters using large aperture ZnSe photoconductive antennas[J]. IEEE Photonics Journal, 3, 174-186(2011).

    [5] Ropagnol X, Bouvier M, Reid M et al. Improvement in thermal barriers to intense terahertz generation from photoconductive antennas[J]. Journal of Applied Physics, 116, 043107(2014).

    [6] Holzman J F, Elezzabi A Y. Two-photon photoconductive terahertz generation in ZnSe[J]. Applied Physics Letters, 83, 2967-2969(2003).

    [7] Kononenko V V, Komlenok M S, Chizhov P A et al. Efficiency of photoconductive terahertz generation in nitrogen-doped diamonds[J]. Photonics, 9, 18(2021).

    [8] Auston D H, Cheung K P, Smith P R. Picosecond photoconducting hertzian dipoles[J]. Applied Physics Letters, 45, 284-286(1984).

    [9] Yang K H, Richards P L, Shen Y R. Generation of far-infrared radiation by picosecond light pulses in LiNbO3[J]. Applied Physics Letters, 19, 320-323(1971).

    [10] Morris J R, Shen Y R. Far-infrared generation by picosecond pulses in electro-optical materials[J]. Optics Communications, 3, 81-84(1971).

    [11] Hirori H, Tanaka K. Dynamical nonlinear interactions of solids with strong terahertz pulses[J]. Journal of the Physical Society of Japan, 85, 082001(2016).

    [12] Guiramand L, Nkeck J E, Ropagnol X et al. Near-optimal intense and powerful terahertz source by optical rectification in lithium niobate crystal[J]. Photonics Research, 10, 340-346(2022).

    [13] Wu X J, Kong D Y, Hao S B et al. Generation of 13.9-mJ terahertz radiation from lithium niobate materials[J]. Advanced Materials, 35, 2208947(2023).

    [14] Hauri C P, Ruchert C, Vicario C et al. Strong-field single-cycle THz pulses generated in an organic crystal[J]. Applied Physics Letters, 99, 161116(2011).

    [15] Lee J A, Kim W T, Jazbinsek M et al. X-shaped alignment of chromophores: potential alternative for efficient organic terahertz generators[J]. Advanced Optical Materials, 8, 1901921(2020).

    [16] Kim S J, Kang B J, Puc U et al. Highly nonlinear optical organic crystals for efficient terahertz wave generation, detection, and applications[J]. Advanced Optical Materials, 9, 2101019(2021).

    [17] Balos V, de Cantoblanco C U, Wolf M et al. Optical rectification and electro-optic sampling in quartz[J]. Optics Express, 31, 13317-13327(2023).

    [18] Wei Y X, Le J M, Huang L et al. Efficient generation of intense broadband terahertz pulses from quartz[J]. Applied Physics Letters, 122, 081105(2023).

    [19] Fülöp J A, Tzortzakis S, Kampfrath T. Laser-driven strong-field terahertz sources[J]. Advanced Optical Materials, 8, 1900681(2020).

    [20] Hebling J, Almasi G, Kozma I Z et al. Velocity matching by pulse front tilting for large area THz-pulse generation[J]. Optics Express, 10, 1161-1166(2002).

    [21] Zhang B L, Ma Z Z, Ma J L et al. 1.4-mJ high energy terahertz radiation from lithium niobates[J]. Laser & Photonics Reviews, 15, 2000295(2021).

    [22] Jazbinsek M, Puc U, Abina A et al. Organic crystals for THz photonics[J]. Applied Sciences, 9, 882(2019).

    [23] Zhang X C, Ma X F, Jin Y et al. Terahertz optical rectification from a nonlinear organic crystal[J]. Applied Physics Letters, 61, 3080-3082(1992).

    [24] Vicario C, Jazbinsek M, Ovchinnikov A V et al. High efficiency THz generation in DSTMS, DAST and OH1 pumped by Cr∶ forsterite laser[J]. Optics Express, 23, 4573-4580(2015).

    [25] Vicario C, Ovchinnikov A V, Ashitkov S I et al. Generation of 0.9-mJ THz pulses in DSTMS pumped by a Cr∶Mg₂SiO₄ laser[J]. Optics Letters, 39, 6632-6635(2014).

    [26] Majkić A, Zgonik M, Petelin A et al. Terahertz source at 9.4 THz based on a dual-wavelength infrared laser and quasi-phase matching in organic crystals OH1[J]. Applied Physics Letters, 105, 141115(2014).

    [27] Rader C, Zaccardi Z B, Ho S H E et al. A new standard in high-field terahertz generation: the organic nonlinear optical crystal PNPA[J]. ACS Photonics, 9, 3720-3726(2022).

    [28] Cook D J, Hochstrasser R M. Intense terahertz pulses by four-wave rectification in air[J]. Optics Letters, 25, 1210-1212(2000).

    [29] Oh T I, Yoo Y J, You Y S et al. Generation of strong terahertz fields exceeding 8 MV/cm at 1 kHz and real-time beam profiling[J]. Applied Physics Letters, 105, 041103(2014).

    [30] Koulouklidis A D, Gollner C, Shumakova V et al. Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments[J]. Nature Communications, 11, 292(2020).

    [31] Zhao T, Xie P Y, Wan H J et al. Ultrathin MXene assemblies approach the intrinsic absorption limit in the 0.5‒10 THz band[J]. Nature Photonics, 17, 622-628(2023).

    [32] Sun W F, Wang X K, Zhang Y. Terahertz generation from laser-induced plasma[J]. Opto-Electronic Science, 1, 220003(2022).

    [33] Liao G Q, Li Y T. Review of intense terahertz radiation from relativistic laser-produced plasmas[J]. IEEE Transactions on Plasma Science, 47, 3002-3008(2019).

    [34] Yiwen E, Zhang L L, Tcypkin A et al. Broadband THz sources from gases to liquids[J]. Ultrafast Science, 2021, 9892763(2021).

    [35] Hamster H, Sullivan A, Gordon S et al. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction[J]. Physical Review Letters, 71, 2725-2728(1993).

    [36] Sheng Z M, Mima K, Zhang J E et al. Emission of electromagnetic pulses from laser wakefields through linear mode conversion[J]. Physical Review Letters, 94, 095003(2005).

    [37] Liao G Q, Li Y T, Li C et al. Bursts of terahertz radiation from large-scale plasmas irradiated by relativistic picosecond laser pulses[J]. Physical Review Letters, 114, 255001(2015).

    [38] Liao G Q, Li Y T, Liu H et al. Multimillijoule coherent terahertz bursts from picosecond laser-irradiated metal foils[J]. Proceedings of the National Academy of Sciences of the United States of America, 116, 3994-3999(2019).

    [39] Ebbesen T W, Lezec H J, Ghaemi H F et al. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 391, 667-669(1998).

    [40] Seo M A, Park H R, Koo S M et al. Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit[J]. Nature Photonics, 3, 152-156(2009).

    [41] Liu M K, Hwang H Y, Tao H et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial[J]. Nature, 487, 345-348(2012).

    [42] Lee S, Baek S, Kim T T et al. Metamaterials for enhanced optical responses and their application to active control of terahertz waves[J]. Advanced Materials, 32, 2000250(2020).

    [43] Suresh Kumar N, Naidu K C B, Banerjee P et al. A review on metamaterials for device applications[J]. Crystals, 11, 518(2021).

    [44] Wang K L, Mittleman D M, van der Valk N C J et al. Antenna effects in terahertz apertureless near-field optical microscopy[J]. Applied Physics Letters, 85, 2715-2717(2004).

    [46] Kang J H, Kim D S, Park Q H. Local capacitor model for plasmonic electric field enhancement[J]. Physical Review Letters, 102, 093906(2009).

    [47] Jelic V, Iwaszczuk K, Nguyen P H et al. Ultrafast terahertz control of extreme tunnel currents through single atoms on a silicon surface[J]. Nature Physics, 13, 591-598(2017).

    [48] Nguyen P, Rathje C, Hornig R J et al. Coupling terahertz pulses to a scanning tunneling microscope[J]. Physics in Canada, 71, 157-160(2015).

    [49] Peller D, Roelcke C, Kastner L Z et al. Quantitative sampling of atomic-scale electromagnetic waveforms[J]. Nature Photonics, 15, 143-147(2021).

    [50] Markelz A G, Asmar N G, Brar B et al. Interband impact ionization by terahertz illumination of InAs heterostructures[J]. Applied Physics Letters, 69, 3975-3977(1996).

    [51] Tarekegne A T, Hirori H, Tanaka K et al. Impact ionization dynamics in silicon by MV/cm THz fields[J]. New Journal of Physics, 19, 123018(2017).

    [52] Su F H, Blanchard F, Sharma G et al. Terahertz pulse induced intervalley scattering in photoexcited GaAs[J]. Optics Express, 17, 9620-9629(2009).

    [53] Xu S J, Huang D J, Liu Z et al. Hydrostatic pressure effect of photocarrier dynamics in GaAs probed by time-resolved terahertz spectroscopy[J]. Optics Express, 29, 14058-14068(2021).

    [54] Razzari L, Su F H, Sharma G et al. Nonlinear ultrafast modulation of the optical absorption of intense few-cycle terahertz pulses in n-doped semiconductors[J]. Physical Review B, 79, 193204(2009).

    [55] Zeiger H J, Vidal J, Cheng T K et al. Theory for displacive excitation of coherent phonons[J]. Physical Review B, 45, 768-778(1992).

    [56] Johnson A, Moreno-Mencía D, Amuah E et al. Ultrafast loss of lattice coherence in the light-induced structural phase transition of V2O3[J]. Physical Review Letters, 129, 255701(2022).

    [58] Maehrlein S, Paarmann A, Wolf M et al. Terahertz sum-frequency excitation of a Raman-active phonon[J]. Physical Review Letters, 119, 127402(2017).

    [59] Mankowsky R, Först M, Cavalleri A. Non-equilibrium control of complex solids by nonlinear phononics[J]. Reports on Progress in Physics, 79, 064503(2016).

    [60] Reinhoffer C, Pilch P, Reinold A et al. High-order nonlinear terahertz probing of the two-band superconductor MgB2: third- and fifth-order harmonic generation[J]. Physical Review B, 106, 214514(2022).

    [61] Sie E J, Nyby C M, Pemmaraju C D et al. An ultrafast symmetry switch in a Weyl semimetal[J]. Nature, 565, 61-66(2019).

    [62] Vaswani C, Wang L L, Mudiyanselage D et al. Light-driven Raman coherence as a nonthermal route to ultrafast topology switching in a Dirac semimetal[J]. Physical Review X, 10, 021013(2020).

    [63] Li X, Qiu T, Zhang J H et al. Terahertz field–induced ferroelectricity in quantum paraelectric SrTiO3[J]. Science, 364, 1079-1082(2018).

    [64] Guo J X, Chen W W, Chen H S et al. Recent progress in optical control of ferroelectric polarization[J]. Advanced Optical Materials, 9, 2002146(2021).

    [65] Zhuang S H, Hu J M. Role of polarization-photon coupling in ultrafast terahertz excitation of ferroelectrics[J]. Physical Review B, 106, L140302(2022).

    [66] Cheng B, Kramer P L, Shen Z X et al. Terahertz-driven local dipolar correlation in a quantum paraelectric[J]. Physical Review Letters, 130, 126902(2023).

    [67] Kampfrath T, Sell A, Klatt G et al. Coherent terahertz control of antiferromagnetic spin waves[J]. Nature Photonics, 5, 31-34(2011).

    [68] Barman A, Gubbiotti G, Ladak S et al. The 2021 magnonics roadmap[J]. Journal of Physics: Condensed Matter, 33, 0413001(2021).

    [69] Baltz V, Manchon A, Tsoi M et al. Antiferromagnetic spintronics[J]. Reviews of Modern Physics, 90, 015005(2018).

    [70] Gomonay E V, Loktev V M. Spintronics of antiferromagnetic systems (review article)[J]. Low Temperature Physics, 40, 17-35(2014).

    [71] Salén P, Basini M, Bonetti S et al. Matter manipulation with extreme terahertz light: progress in the enabling THz technology[J]. Physics Reports, 836/837, 1-74(2019).

    [72] Jin Z M, Mics Z, Ma G H et al. Single-pulse terahertz coherent control of spin resonance in the canted antiferromagnet YFeO3, mediated by dielectric anisotropy[J]. Physical Review B, 87, 094422(2013).

    [73] Mashkovich E A, Grishunin K A, Dubrovin R M et al. Terahertz light–driven coupling of antiferromagnetic spins to lattice[J]. Science, 374, 1608-1611(2021).

    [74] Baierl S, Mentink J H, Hohenleutner M et al. Terahertz-driven nonlinear spin response of antiferromagnetic nickel oxide[J]. Physical Review Letters, 117, 197201(2016).

    [75] Vicario C, Ruchert C, Ardana-Lamas F et al. Off-resonant magnetization dynamics phase-locked to an intense phase-stable terahertz transient[J]. Nature Photonics, 7, 720-723(2013).

    [76] Bonetti S, Hoffmann M C, Sher M J et al. THz-driven ultrafast spin-lattice scattering in amorphous metallic ferromagnets[J]. Physical Review Letters, 117, 087205(2016).

    [77] Schlauderer S, Lange C, Baierl S et al. Temporal and spectral fingerprints of ultrafast all-coherent spin switching[J]. Nature, 569, 383-387(2019).

    [78] Baierl S, Hohenleutner M, Kampfrath T et al. Nonlinear spin control by terahertz-driven anisotropy fields[J]. Nature Photonics, 10, 715-718(2016).

    [79] Seifert T, Jaiswal S, Martens U et al. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation[J]. Nature Photonics, 10, 483-488(2016).

    [80] Liao G Q, Li Y T, Liu H et al. Multimillijoule coherent terahertz bursts from picosecond laser-irradiated metal foils[J]. Proceedings of the National Academy of Sciences of the United States of America, 116, 3994-3999(2019).

    [81] Shi J J, Yoo D, Vidal-Codina F et al. A room-temperature polarization-sensitive CMOS terahertz camera based on quantum-dot-enhanced terahertz-to-visible photon upconversion[J]. Nature Nanotechnology, 17, 1288-1293(2022).

    [82] Pein B C, Chang W D, Hwang H Y et al. Terahertz-driven luminescence and colossal stark effect in CdSe-CdS colloidal quantum dots[J]. Nano Letters, 17, 5375-5380(2017).

    [83] Kimura K, Morinaga Y, Imada H et al. Terahertz-field-driven scanning tunneling luminescence spectroscopy[J]. ACS Photonics, 8, 982-987(2021).

    [84] Blaga C I, Catoire F, Colosimo P et al. Strong-field photoionization revisited[J]. Nature Physics, 5, 335-338(2009).

    [85] Corkum P B, Burnett N H, Brunel F. Above-threshold ionization in the long-wavelength limit[J]. Physical Review Letters, 62, 1259-1262(1989).

    [86] Krause J L, Schafer K J, Kulander K C. High-order harmonic generation from atoms and ions in the high intensity regime[J]. Physical Review Letters, 68, 3535-3538(1992).

    [87] Schubert O, Hohenleutner M, Langer F et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations[J]. Nature Photonics, 8, 119-123(2014).

    [88] Hohenleutner M, Langer F, Schubert O et al. Real-time observation of interfering crystal electrons in high-harmonic generation[J]. Nature, 523, 572-575(2015).

    [89] Bowlan P, Martinez-Moreno E, Reimann K et al. Ultrafast terahertz response of multilayer graphene in the nonperturbative regime[J]. Physical Review B, 89, 041408(2014).

    [90] Hafez H A, Kovalev S, Deinert J C et al. Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions[J]. Nature, 561, 507-511(2018).

    [91] Schmid C P, Weigl L, Grössing P et al. Tunable non-integer high-harmonic generation in a topological insulator[J]. Nature, 593, 385-390(2021).

    [92] Planken P C M, Nienhuys H K, Bakker H J et al. Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe[J]. Journal of the Optical Society of America B, 18, 313-317(2001).

    [93] Hoffmann M C, Brandt N C, Hwang H Y et al. Terahertz Kerr effect[J]. Applied Physics Letters, 95, 231105(2009).

    [94] Kampfrath T, Campen R K, Wolf M et al. The nature of the dielectric response of methanol revealed by the terahertz Kerr effect[J]. The Journal of Physical Chemistry Letters, 9, 1279-1283(2018).

    [95] Zhao H, Tan Y, Zhang R et al. Anion–water hydrogen bond vibration revealed by the terahertz Kerr effect[J]. Optics Letters, 46, 230-233(2021).

    [96] Xu J, Plaxco K W, Allen S J. Absorption spectra of liquid water and aqueous buffers between 0.3 and 3.72 THz[J]. The Journal of Chemical Physics, 124, 036101(2006).

    [97] Hough C M, Purschke D N, Huang C X et al. Intense terahertz pulses inhibit Ras signaling and other cancer-associated signaling pathways in human skin tissue models[J]. Journal of Physics: Photonics, 3, 034004(2021).

    [98] Weightman P. Prospects for the study of biological systems with high power sources of terahertz radiation[J]. Physical Biology, 9, 053001(2012).

    [99] Zhou R Y, Wang C, Xu W D et al. Biological applications of terahertz technology based on nanomaterials and nanostructures[J]. Nanoscale, 11, 3445-3457(2019).

    [100] Liu W, Liu Y, Huang J Q et al. Application of terahertz spectroscopy in biomolecule detection[J]. Frontiers in Laboratory Medicine, 2, 127-133(2018).

    [101] Yamazaki S, Harata M, Ueno Y et al. Propagation of THz irradiation energy through aqueous layers: demolition of actin filaments in living cells[J]. Scientific Reports, 10, 9008(2020).

    [102] Bock J, Fukuyo Y, Kang S et al. Mammalian stem cells reprogramming in response to terahertz radiation[J]. PLoS One, 5, e15806(2010).

    [103] Kim K T, Park J, Jo S J et al. High-power femtosecond-terahertz pulse induces a wound response in mouse skin[J]. Scientific Reports, 3, 2296(2013).

    [104] Titova L V, Ayesheshim A K, Golubov A et al. Intense THz pulses cause H2AX phosphorylation and activate DNA damage response in human skin tissue[J]. Biomedical Optics Express, 4, 559-568(2013).

    [105] Cheon H, Paik J H, Choi M et al. Detection and manipulation of methylation in blood cancer DNA using terahertz radiation[J]. Scientific Reports, 9, 6413(2019).

    Tools

    Get Citation

    Copy Citation Text

    Tianwu Wang, Kai Zhang, Wenyin Wei, Hongbo Li, Zhipeng Zhou, Ling Cao, Hong Li, Guangyou Fang, Yirong Wu. Intense Terahertz Generation and Its Applications in Nonlinear Research[J]. Chinese Journal of Lasers, 2023, 50(17): 1714011

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: terahertz technology

    Received: May. 5, 2023

    Accepted: Jun. 13, 2023

    Published Online: Sep. 13, 2023

    The Author Email: Wang Tianwu (wangtw@aircas.ac.cn)

    DOI:10.3788/CJL230797

    Topics