Chinese Journal of Lasers, Volume. 50, Issue 14, 1411001(2023)
Optical Structure Design of 3.93
[1] Shcherbak I, Millar N, Robertson G P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen[J]. Proceedings of the National Academy of Sciences of the United States of America, 111, 9199-9204(2014).
[2] Ravishankara A R, Daniel J S, Portmann R W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century[J]. Science, 326, 123-125(2009).
[3] Zhou M Q, Langerock B, Wells K C et al. An intercomparison of total column-averaged nitrous oxide between ground-based FTIR TCCON and NDACC measurements at seven sites and comparisons with the GEOS-Chem model[J]. Atmospheric Measurement Techniques, 12, 1393-1408(2019).
[4] Wang Q, Wang S C, Liu T Y et al. Research progress of multi-component gas detection by photoacoustic spectroscopy[J]. Spectroscopy and Spectral Analysis, 42, 1-8(2022).
[5] Karlovets E V, Kassi S, Tashkun S A et al. The absorption spectrum of nitrous oxide between 8325 and 8622 cm-1[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 262, 107508(2021).
[6] Dai L X, Liang M J, Zhang Y et al. Review of the satellite remote sensing studies of the non-CO2 greenhouse gas N2O[J]. China Environmental Science, 2, 1-18(2023).
[7] Sun L Y, Niu M S, Chen J X et al. Nitrogen dioxide detection based on photoacoustic spectroscopy[J]. Chinese Journal of Lasers, 49, 2310002(2022).
[8] Chen D Y, Zhou L, Yang F M et al. Application progress of cavity-enhanced absorption spectroscopy (CEAS) in atmospheric environment research[J]. Spectroscopy and Spectral Analysis, 41, 2688-2695(2021).
[9] Wu Z W, Dong Y T, Zhou W D. Near infrared cavity enhanced absorption spectroscopy study of N2O[J]. Spectroscopy and Spectral Analysis, 34, 2081-2084(2014).
[10] Tang J. Highly sensitive detection technology of trace gases based on cavity ring-down spectroscopy[D](2019).
[11] Bai W G. Preliminary study of satellite remote sensing of greenhouse gases methane of Chinese Academy of Meteorological Sciences[D](2010).
[12] Berhe T Y, Tsidu G M, Blumenstock T et al. Methane and nitrous oxide from ground-based FTIR at Addis Ababa: observations, error analysis, and comparison with satellite data[J]. Atmospheric Measurement Techniques, 13, 4079-4096(2020).
[13] Clarke G B, Wilson E L, Miller J H et al. Uncertainty analysis for the miniaturized laser heterodyne radiometer (mini-LHR) for the measurement of carbon dioxide in the atmospheric column[J]. Measurement Science and Technology, 25, 055204(2014).
[14] Tan T, Cao Z S, Wang G S et al. Study on the technology of the 4.4 μm mid-infrared laser heterodyne spectrum[J]. Spectroscopy and Spectral Analysis, 35, 1516-1519(2015).
[15] Lu X J, Cao Z S, Huang Y B et al. Laser heterodyne spectrometer for solar spectrum measurement in the 3.53 μm region[J]. Optics and Precision Engineering, 26, 1846-1854(2018).
[16] Weidmann D, Tsai T, MacLeod N A et al. Atmospheric observations of multiple molecular species using ultra-high-resolution external cavity quantum cascade laser heterodyne radiometry[J]. Optics Letters, 36, 1951-1953(2011).
[17] Xue Z Y, Li J, Liu X H et al. Measurement and profile inversion of atmospheric N2O absorption spectrum based on laser heterodyne detection[J]. Acta Physica Sinica, 70, 217801(2021).
[18] Deng H. Research on column measurement method of main greenhouse gas based on laser heterodyne spectroscopy[D](2020).
[19] Huang J. Research on near-infrared laser heterodyne spectroscopy detection technology and greenhouse gases measurements[D](2022).
[20] Huang J, Huang Y B, Lu X J et al. Measurement and concentration inversion of ozone in Golmud by laser heterodyne spectrometer[J]. Acta Photonica Sinica, 50, 0401002(2021).
[21] Shen F J, Wang G X, Wang J J et al. Transportable mid-infrared laser heterodyne radiometer operating in the shot-noise dominated regime[J]. Optics Letters, 46, 3171-3174(2021).
[22] Ma Z F, Zhang C X, Zhang Z Y et al. Signal-noise ratio in optical heterodyne detection[J]. Acta Optica Sinica, 27, 889-892(2007).
[23] Teich M C. Infrared heterodyne detection[J]. Proceedings of the IEEE, 56, 37-46(1968).
[24] Siegman A E. The antenna properties of optical heterodyne receivers[J]. Applied Optics, 5, 1588-1594(1966).
[25] Kostiuk T, Mumma M J. Remote sensing by IR heterodyne spectroscopy[J]. Applied Optics, 22, 2644(1983).
[26] Weidmann D, Reburn W J, Smith K M. Ground-based prototype quantum cascade laser heterodyne radiometer for atmospheric studies[J]. The Review of Scientific Instruments, 78, 073107(2007).
[27] Rodgers C D[M]. Inverse methods for atmospheric sounding: theory and practice(2000).
[29] Huang Y B, Cao Z S, Lu X J et al. Measurement of high-resolution total atmospheric transmittance and retrieval of water vapor with laser heterodyne technology[J]. Chinese Journal of Quantum Electronics, 37, 497-505(2020).
[30] Zhang S L, Huang Y B, Lu X J et al. Retrieval of atmospheric H2O column concentration based on mid-infrared inter-band cascade laser heterodyne radiometer[J]. Spectroscopy and Spectral Analysis, 39, 1317-1322(2019).
[31] Huang J, Huang Y B, Lu X J et al. Design of 3.66 μm laser heterodyne spectrometer and retrieval of water vapor column concentration[J]. Journal of Infrared and Millimeter Waves, 39, 610-618(2020).
[32] Lu X J, Cao Z S, Tan T et al. Instrument line shape function of laser heterodyne spectrometer[J]. Acta Physica Sinica, 68, 064208(2019).
Get Citation
Copy Citation Text
Tianmin Zhang, Jun Huang, Yao Huang, Gang Qi, Zihao Yuan, Zhensong Cao, Yinbo Huang, Ruizhong Rao, Xingji Lu. Optical Structure Design of 3.93
Category: spectroscopy
Received: Jan. 12, 2023
Accepted: Feb. 27, 2023
Published Online: Jul. 10, 2023
The Author Email: Lu Xingji (xjlu@aiofm.ac.cn)