Journal of Inorganic Materials, Volume. 34, Issue 3, 247(2019)

Progress on High-throughput Synthesis and Characterization Methods for Thermoelectric Materials

Jun LUO1,2, Shi-Yang HE1, Zhi-Li LI1, Yong-Bo LI1, Feng WANG1, Ji-Ye ZHANG1, [in Chinese]1,2, [in Chinese]1, [in Chinese]1, [in Chinese]1, [in Chinese]1, and [in Chinese]1
Author Affiliations
  • 11. School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
  • 22. Materials Genome Institute, Shanghai University, Shanghai 200444, China
  • show less
    References(52)

    [1] WIDENER ANDREA. Materials genome initiative. Chem. Eng[D]. News, 91, 25-27(2013).

    [2] ADLER PHILIP D F, ELBERT KATHERINE C, RACCUGLIA PAUL et al. Machine-learning-assisted materials discovery using failed experiments[D]. Nature, 533, 73-75(2016).

    [3] CHEN RENKUN, DELGADO RAUL DIAZ, HOCHBAUM ALLON I et al. Enhanced thermoelectric performance of rough silicon nanowires[D]. Nature, 451, 163-165(2008).

    [4] LI XIN, LIU YE-FENG, YOU LI et al. Boosting the thermoelectric performance of PbSe through dynamic doping and hierarchical phonon scattering[D]. Energy Environ. Sci., 11, 1848-1858(2018).

    [5] FU CHEN-GUANG, LIU YIN-TU, ZHU TIE-JUN et al. Compromise and synergy in high-efficiency thermoelectric materials[D]. Adv. Mater., 29, 1605884-1-26(2017).

    [6] AYDEMIR UMUT, GROVOGUI JANN A, PAN YU et al. Melt-centrifuged (Bi,Sb)2Te3: engineering microstructure toward high thermoelectric efficiency[D]. Adv. Mater., 30, 1802016-1-7(2018).

    [7] XIAO KAI, YU CUI, ZHU TIE-JUN et al. Microstructure of ZrNiSn-base half-Heusler thermoelectric materials prepared by melt-spinning.[D]. Inorg. Mater., 25, 569-572(2010).

    [8] FU CHEN-GUANG, LIU YIN-TU, XIA KAI-YANG et al. Lanthanide contraction as a design factor for high-performance half-Heusler thermoelectric materials[D]. Adv. Mater., 30, 1800881-1-7(2018).

    [9] LI XIAO-YA, QIU PENG-FEI, YAO ZHENG et al. Investigation on quick fabrication of n-type filled Skutterudites.[D]. Inorg. Mater., 31, 1375-1382(2016).

    [10] CHENG NIAN, LIU RUI-HENG, ZHANG JIA-WEI et al. High- performance pseudocubic thermoelectric materials from non-cubic chalcopyrite compounds[D]. Adv. Mater., 26, 3848-3853(2014).

    [11] BASU RANITA, BHATT RANU, BHATTACHARYA SHOVIT et al. Enhanced thermoelectric properties of selenium-deficient layered TiSe2-x: a charge-density-wave material. ACS Appl. Mater[D]. Interfaces, 6, 18619-18625(2014).

    [12] DRAVID VINAYAK P, KANATZIDIS MERCOURI G, ZHAO LI-DONG. The panoscopic approach to high performance thermoelectrics[D]. Energy Environ. Sci., 7, 251-268(2014).

    [13] AARON LALONDE, HEINZ NICHOLAS A, PEI YAN-ZHONG et al. Combination of large nanostructures and complex band structure for high performance thermoelectric lead telluride[D]. Energy Environ. Sci., 4, 3640-3645(2011).

    [14] MARTIN J, WONG-NG W, YAN Y G et al. A temperature dependent screening tool for high throughput thermoelectric characterization of combinatorial films[D]. Rev. Sci. Instrum., 84, 115110-1-7(2013).

    [15] BRICEÑO GABRIEL, SUN XIAO-DONG, XIANG XIAO-DONG et al. A combinatorial approach to materials discovery[D]. Science, 268, 1738-1740(1995).

    [16] FUJIMOTO K, ITO S, KATO T et al. Development and application of combinatorial electrostatic atomization system “M-ist Combi”: high-throughput preparation of electrode materials[D]. Solid State Ionics, 177, 2639-2642(2006).

    [17] FUJIMOTO KENJIRO, SHOGO YOSHIDA, TAGUCHI TORU et al. Design of Seebeck coefficient measurement probe for powder library[D]. ACS Comb. Sci., 16, 66-70(2014).

    [18] BJERG LASSE, HEDEGAARD ELLEN M J, JOHNSEN SIMON et al. Functionally graded Ge1-xSix thermoelectrics by simultaneous band gap and carrier density engineering[D]. Chem. Mater., 26, 4992-4997(2014).

    [19] CAPPER PETER, KASAP SAFA. Springer Handbook of Electronic and Photonic Materials[D]. Inc., 236(2006).

    [20] HEDEGAARD ELLEN M J, MAMAKHEL AREF A H, REARDON HAZEL et al. Functionally graded (PbTe)1-x(SnTe)x thermoelectrics[D]. Chem. Mater., 30, 280-287(2018).

    [21] KOHRI H, NISHIDA I A, SHIOTA I. Improvement of thermoelectric properties for n-type PbTe by adding Ge[D]. Mater. Sci. Forum, 423-425, 381-384(2003).

    [22] JACKSON MELVIN R, PELUSO LOUIS A, ZHAO JI CHENG et al. A diffusion multiple approach for the accelerated design of structural materials[D]. MRS Bull., 27, 324-329(2002).

    [23] DARIEL M P, DASHEVSKY Z, GELBSTEIN Y. Powder metallurgical processing of functionally graded p-Pb1-xSnxTe materials for thermoelectric applications. Phys[D]. B, 391, 256-265(2007).

    [24] HAZAN EDEN, MADAR NAOR, OHAD BEN-YEHUDA et al. Functional graded germanium-lead chalcogenide-based thermoelectric module for renewable energy applications[D]. Adv. Energy Mater., 5, 1500272-1-8(2015).

    [25] JANUSZKO KAMILA, OGATA YUDAI, STABRAWA ARTUR et al. Influence of sedimentation of atoms on structural and thermoelectric properties of Bi-Sb alloys.[D]. Electron. Mater., 45, 1947-1955(2016).

    [26] LUDWIG ALFRED, WAMBACH MATTHIAS, ZIOLKOWSKI PAWEL et al. Application of high-throughput Seebeck microprobe measurements on thermoelectric half-Heusler thin film combinatorial material libraries[D]. ACS Comb. Sci., 20, 1-18(2018).

    [27] BHATTACHARYA SANDIP, STERN ROBIN, WAMBACH MATTHIAS et al. Unraveling self-doping effects in thermoelectric TiNiSn half-Heusler compounds by combined theory and high-throughput experiments[D]. Adv. Electron. Mater., 2, 1500208-1-9(2016).

    [28] XIANG XIAO-DONG. High throughput synthesis and screening for functional materials[D]. Appl. Surf. Sci., 223, 54-61(2004).

    [29] CAHILLBDAVID G, ZHAO JI-CHENG, ZHENG XUAN. Thermal conductivity mapping of the Ni-Al system and the beta-NiAl phase in the Ni-Al-Cr system[D]. Scripta Mater., 66, 935-938(2012).

    [30] MAO SAMUELS. High throughput growth and characterization of thin film materials. J. Cryst[D]. Growth, 379, 123-130(2013).

    [32] EESLEY GARY L, PADDOCK CAROLYN A. Transient thermoreflectance from thin metal films.[D]. Appl. Phys., 60, 285-290(1986).

    [33] ABADA B, BORCA-TASCIUC D A, MARTIN-GONZALEZA M S. Non-contact methods for thermal properties measurement[D]. Renew. Sust. Energ. Rev., 76, 1348-1370(2017).

    [34] MCCLUSKEY PATRICK J, VLASSAK JOOST J. Combinatorial nanocalorimetry.[D]. Mater. Res., 25, 2086-2100(2010).

    [35] , GREGOIREJOHN M, MCCLUSKEYPATRICK J et al. Combining combinatorial nanocalorimetry and X-ray diffraction techniques to study the effects of composition and quench rate on Au-Cu-Si metallic glasses[D]. Scripta Mater., 66, 178-181(2012).

    [36] TRITT TERRY M. Thermal Conductivity: Theory, Properties, and Applications[D]. New York: Kluwer Academic/Plenum Publishers, 225-231(2004).

    [37] EESLEY G L. Observation of nonequilibrium electron heating in copper[D]. Phys. Rev. Lett., 51, 2140-2143(1983).

    [38] BAHK J H, FAVALORO T, SHAKOURI A. Characterization of the temperature dependence of the thermoreflectance coefficient for conductive thin films[D]. Rev. Sci. Instrum., 86, 024903-1-9(2015).

    [39] ABAD BEGOÑA, MANZANO CRISTINA V, MUÑOZ MIGUEL ROJO et al. Anisotropic effects on the thermoelectric properties of highly oriented electrodeposited Bi2Te3 films[D]. Sci. Rep., 6, 19129-1-8(2016).

    [40] CAHILL DAVID G, FAUCONNIER VINCENT, HUXTABLE SCOTT et al. Thermal conductivity imaging at micrometre-scale resolution for combinatorial studies of materials[D]. Nat. Mater., 3, 298-301(2004).

    [41] MORI OKAWA, NISHI TSUYOSHI, YAMAMOTO SUGURU et al. Thermal microscope measurement of thermal effusivity distribution in compositionally graded PbTe-Sb2Te3-Ag2Te alloy system. Thermochim[D]. Acta, 659, 39-43(2018).

    [42] GOTSZALKA TEODOR, WIELGOSZEWSKI GRZEGORZ. Scanning thermal microscopy (SThM): how to map temperature and thermal properties at the nanoscale[D]. Adv. Imag. Electron Phys., 190, 177-221(2015).

    [43] GRAUBY STÉPHANE, PUYOO ETIENNE, RAMPNOUX JEAN-MICHEL et al. Si and SiGe nanowires: fabrication process and thermal conductivity measurement by 3ω-scanning thermal microscopy[D]. J. Phys. Chem. C, 117, 9025-9034(2013).

    [44] KENNY THOMAS W, KING WILLIAM P. Design of atomic force microscope cantilevers for combined thermomechanical writing and thermal reading in array operation[D]. J. Microelectromech. S., 11, 765-774(2002).

    [45] ESFAHANI EHSAN NASR, MA FEI-YUE, WANG SHAN-YU et al. Quantitative nanoscale mapping of three-phase thermal conductivities in filled skutterudites via scanning thermal microscopy[D]. Natl. Sci. Rev., 5, 59-69(2018).

    [46] ANDRES PEREZ-TABORDA J, CABALLERO-CALERO O, VERA-LONDONO L et al. High thermoelectric zT in n-type silver selenide films at room temperature[D]. Adv. Energy Mater., 8, 1870033-1-8(2018).

    [47] JIRO NAGAO, MARHOUN FERHAT. Thermoelectric and transport properties of β-Ag2Se compounds.[D]. Appl. Phys., 88, 813-816(2000).

    [48] HUNG C I, WU K H, ZIOLKOWSKI P et al. Improvement of spatial resolution for local Seebeck coefficient measurements by deconvolution algorithm[D]. Rev. Sci. Instrum., 80, 105104-1-8(2009).

    [49] WANG WEI-HANG, YAO XU, ZHOU AI-JUN et al. Impact of the film thickness and substrate on the thermopower measurement of thermoelectric films by the potential-Seebeck microprobe (PSM)[D]. Appl. Therm. Eng., 107, 552-559(2016).

    [50] BIANCHI MARCO, BREMHOLM MARTIN, MI JIAN-LI et al. Phase separation and bulk p-n transition in single crystals of Bi2Te2Se topological insulator[D]. Adv. Mater., 25, 889-893(2013).

    [51] DE BOOR J, STIEWEP C, ZIOLKOWSKI P et al. High-temperature measurement of Seebeck coefficient and electrical conductivity.[D]. Electron. Mater., 42, 1711-1718(2013).

    [52] XU K Q, YU H Z, ZENG H R et al. Ultrahigh resolution characterizing nanoscale Seebeck coefficient via the heated, conductive AFM probe[D]. Appl. Phys. A, 118, 57-61(2015).

    Tools

    Get Citation

    Copy Citation Text

    Jun LUO, Shi-Yang HE, Zhi-Li LI, Yong-Bo LI, Feng WANG, Ji-Ye ZHANG, [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Progress on High-throughput Synthesis and Characterization Methods for Thermoelectric Materials[J]. Journal of Inorganic Materials, 2019, 34(3): 247

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jul. 19, 2018

    Accepted: --

    Published Online: Sep. 26, 2021

    The Author Email:

    DOI:10.15541/jim20180335

    Topics